[math]2006年京都大学理系後期数学問題6

Table of Contents

問題

\(\tan{1^\circ}\)は有理数か。

方針

背理法を用いる。

解答

有理数であると仮定して、\(\tan{1^\circ}=\alpha\)と置く。$$\tan{(1+1)^\circ}=\frac{2\alpha}{1-\alpha^2}$$は有理数である。これを\(\beta\)と置くと、$$\tan{(2+1)^\circ}=\frac{\alpha+\beta}{1-\alpha\beta}$$も有理数である。以下同様にして\(\tan{4^\circ}, \tan{5^\circ}, \cdots,\tan{30^\circ}\)は有理数である。ところが\(\tan{30^\circ}=\sqrt{3}\)は無理数である。これは矛盾なので、

\(\tan{1^\circ}\)は有理数でない。

解説

\(\tan{1^\circ}\)と\(\tan{1}\)を取り違えないように留意する。

コメント

タイトルとURLをコピーしました