[math]2002年京都大学前期文系数学問題2

man wearing black and white stripe shirt looking at white printer papers on the wall math
Photo by Startup Stock Photos on Pexels.com

問題

四角形\(ABCD\)を底面とする四角錐\(OABCD\)は\(\overrightarrow{OA}+\overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{OD}\)を満たしており、\(0\)と異なる\(4\)つの実数\(p, q, r, s\)に対して\(4\)点\(P, Q, R, S\)を$$\overrightarrow{OP} = p\overrightarrow{OA}, \overrightarrow{OQ} = q\overrightarrow{OB}, \overrightarrow{OR} = r\overrightarrow{OC}, \overrightarrow{OS} = s\overrightarrow{OD}$$によって定める。このとき\(P, Q, R, S\)が同一平面上にあれば\(\displaystyle \frac{1}{p}+\frac{1}{r} = \frac{1}{q}+\frac{1}{s}\)が成立することを示せ。

方針

下の問題とよく似ている。

1972年の京都大学の過去問題。

どんどん文字を置いて示すべき等式に近づけていく。

解答

\(\overrightarrow{OA} = \overrightarrow{a}, \overrightarrow{OB} = \overrightarrow{b}, \overrightarrow{OC } = \overrightarrow{c}\)とすると、\(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}\)は一次独立で、\(\overrightarrow{OD} = \overrightarrow{a}-\overrightarrow{b} + \overrightarrow{c}\)である。\(4\)点\(P, Q, R, S\)は同一平面上にあるので、$$\overrightarrow{PS} = x\overrightarrow{PQ} + y\overrightarrow{PR}$$となる実数\(x, y\)が存在する。したがって、$$\overrightarrow{OS}-\overrightarrow{OP} = x(\overrightarrow{OQ}-\overrightarrow{OP}) + y(\overrightarrow{OR}-\overrightarrow{OP})$$である。ここに与えられた条件を代入して、$$s(\overrightarrow{a}-\overrightarrow{b} + \overrightarrow{c})-p\overrightarrow{a} = x(q\overrightarrow{b}-p\overrightarrow{a}) + y(r\overrightarrow{c}-p\overrightarrow{a})$$となる。よって、$$\begin{cases}s-p = -px-py\\ -s = xq\\ s = yr\end{cases}$$となる。下の二つの式から\(\displaystyle x = -\frac{s}{q}, y = \frac{s}{r}\)であり、上の式に代入すると、\(\displaystyle s-p = \frac{ps}{q}-\frac{ps}{r}\)となる。両辺を\(ps\)で割って整理すると、\(\displaystyle \frac{1}{p} + \frac{1}{r} = \frac{1}{q}+\frac{1}{s}\)を得る。

解説

一次独立なベクトルを用いて係数を比較することが重要である。

関連問題

1970年京都大学理系数学問題3 空間とベクトル
1972年京都大学数学問題文理共通理系問題1文系問題1 ベクトルと論証
1972年京都大学数学文理共通問題文系問題3理系問題4 ベクトルと論証、平行四辺形
1973年京都大学理系数学問題3 ベクトルと一次独立、正三角形
1975年京都大学理系数学問題4 定円と三角形、ベクトル
1976年京都大学文理共通問題文系問題2理系問題2 平面上のベクトルと整数
1978年京都大学数学文理共通問題文系問題2理系問題2 ベクトルと数と式、相加平均、相乗平均
1981年京都大学理系数学問題2 空間ベクトルと一次独立
1983年京都大学文理共通問題文系問題4理系問題4 ベクトルと空間図形、体積
1984年京都大学理系数学問題4 内接円とベクトル
1985年京都大学文理共通数学問題文系問題1理系問題1 ベクトルと座標設定
1986年京都大学数学理系問題4 ベクトルと外接円、論証
1988年京都大学A日程文理共通問題文系問題2理系問題2 内分点とベクトル
1989年京都大学前期理系数学問題4 空間座標とベクトル
1991年京都大学後期理系数学問題3 空間座標とベクトル
1992年京都大学前期数学文理共通文系数学3理系数学3 円周角とベクトル、三平方の定理
1993年京都大学前期文系数学問題2 空間座標とベクトル、平行四辺形と面積比
1998年京都大学前期理系問題3 四面体、ベクトル
1999年京都大学前期数学理系問題2 ベクトルと座標設定
2004年京都大学前期文系数学問題3 角の二等分線とベクトル
2005年京都大学後期文理共通問題文系問題4理系問題4 空間ベクトルと一次独立
2006年京都大学前期理系数学問題5 ベクトルと自力での設定
2008年京都大学前期理系乙数学問題3 ベクトルと一次独立
2022年京都大学理系数学問題4 空間ベクトル

関連リンク

京都大学
京都大学のオフィシャルサイトです。学部・大学院、研究所等の案内や、入試・入学案内、教育研究活動、キャンパスの最新情報など、京都大学に関する情報をご覧いただけます。

コメント

タイトルとURLをコピーしました