[math]Tokyo Institute of Technology, Entrance exam, math, 2019

scenic view of the trees in the snowy mountains math
Photo by Vlad Bagacian on Pexels.com

Problem

\(\displaystyle a = \frac{2^8}{3^4}\),consider the number sequence $$b_k = \frac{(k+1)^{k+1}}{a^k k!}\ \ (k = 1, 2, 3, \cdots)$$ as Show that the
\((1)\) function \(\displaystyle f(x) = (x+1)\log{\left(1+\frac{1}{x}\right)}\) decreases with \(x > 0\).
\((2)\) Express the maximum value of the term \(M\) of the number sequence \(\{b_k\}\) as an irreducible fraction and find all \(k\) such that \(b_k = M\).

Plan

We’ll let ourselves be guided.

Answer

\((1)\)$$\begin{eqnarray}f(x) & = & (x+1)\log{\left(1+\frac{1}{x}\right)}\\ & = & (x+1)\log\left(\frac{x+1}{x}\right)\\ & = & (x+1)\log{(x+1 )}-(x+1)\log{x}\end{eqnarray}$$, so $$\begin{eqnarray}f^{\prime}(x) & = & \log{(x+1)}+(x+1)\cdot \frac{1}{x+1}-\log{x}-(x+1)\cdot \frac{1}{x}\\ & = & \log{(x+1)}-\log{x}-\frac{1}{x}\\ & = & \log{\left(1+\frac{1}{x}\right)}-\frac{1}{x}\end{eqnarray}$$ In general, since \(\log{(1+t)}\leq t\) for positive numbers \(t\) (the equality holds for \(t = 0\)), we know that\(f^{\prime}(x) < 0\). In other words, we know that \(f(x)\) is a decreasing function.

\((2)\)$$\begin{eqnarray}\frac{b_{k+1}}{b_k} & = & \frac{(k+2)^{k+2}}{a^{k+1}(k+1)!} \cdot \frac{a^k k!}{(k+1)^{k+1}}\\ & = & \frac{k+2}{a(k+1)}\cdot \left(1+\frac{1}{k+1}\right)^{k+1}\\ & = & \frac{1}{a}\cdot \left(1+\frac{1}{a k+1}\right)^{k+2}\end{eqnarray}$$ We put this as \(c_k\). Since \(\displaystyle f(x) = \log{\left(1+\frac{1}{x}\right)^{x+1}}\) is a decreasing function, \(\displaystyle \left(1+\frac{1}{x}\right)^{x+1}\) is also is also a decreasing function. Therefore, \(c_k\) is a decreasing sequence. $$\begin{eqnarray}c_1 & = & \frac{3^4}{2^8}\cdot \left(1+\frac{1}{2}\right)^3\\ & = & \frac{3^7}{2^{11}}\\ & = & \frac{2187}{2048}\\ & > & 1\\ c_2 & = & \frac{3^4}{2^8}\cdot \left(1+\frac{1}{3}\right)^4\\ & = & 1\\ c_3 &= & \frac{3^4}{2^8}\cdot \left(1+\frac{1}{4}\right)^5\\ & = & \frac{3^45^5}{2^{18}}\\ & = & \frac{253125}{262144}\\ & < & 1\end{eqnarray}$$, so $$\begin{eqnarray}\frac{b_2}{b_1} & > & 1\\ \frac{b_3}{b_2} & = & 1\\ \frac{b_4}{b_3} & < & 1\end{eqnarray}$$, and since \(c_k < 1\) when \(k\geq 3\), we have \(b_3 > b_4 > \cdots\). Since $$\begin{eqnarray}b_2 & = & \frac{(2+1)^{2+1}}{a^22!}\\ & = & \frac{3^3\cdot 3^8}{2^{16}\cdot 2}\\ & = & \frac{177147}{131072}\end{eqnarray}$$, then Therefore, the maximum value of \(b_k\) is \(\displaystyle \underline{\frac{177147}{131072}}\) and the maximum value of \(b_k = M\) is \(\underline{k = 2, 3}\).

Commentary

This is an orthodox differential calculus problem. In this year’s Tokyo Institute of Technology, this problem cannot be dropped.

Related problem (In Japanese)

2019年東京大学理系数学問題5 微分、極限
2022年京都大学理系数学問題5 積分と面積、微分、最大値を取る値の評価

Related Link

Tokyo Institute of Technology
Information about Tokyo Institute of Technology (Tokyo Tech), Admission Information, Enrollment Information, Introduction to Departments and Graduate Schools, R...

コメント

タイトルとURLをコピーしました