math

math

[math]一般線形群の位数

【定理】\(p\)を素数とし、有限体\(\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}\)とする。\(GL_n(\mathbb{F}_p)\)を、\(\mathbb{F}_p\)の元を成分に持つ\(n\)次正...
math

[math]2021年度東京工業大学数学問題1

問題 正の整数に関する条件(*) \(10\)進法で表したときに、どの位にも数字\(9\)が現れないを考える。以下の問いに答えよ。\((1)\) \(k\)を正の整数とするとき、\(10^{k-1}\)以上かつ\(10^k\)未満で...
math

[math]2005年京都大学理系後期数学問題6

問題 \(n\)枚の\(100\)円玉と\(n+1\)枚の\(500\)円玉を同時に投げたとき、表の出た\(100\)円玉の枚数より表の出た\(500\)円玉の枚数の方が多い確率を求めよ。 方針 \(1\)枚余分なので、...
math

[math]1999年東京大学理系前期数学問題2

問題 複素数\(z_n\ (n=1,\ 2,\ \cdots)\)を\(z_1= 1, z_{n+1}=(3+4i)z_n+1\)によって定める。ただし\(i\)は虚数単位であり、また、複素数\(z = x + yi\)(\(x, ...
math

[math]1961年度東京工業大学数学問題6

問題 すべての\(x\)に対して\(|f^{\prime}(x)|<\frac{1}{2}\)となるとき、\((1)\)方程式\(f(x)-x=0\)がただ\(1\)つの実根をもつことを証明せよ。\((2)\)この実根を\(\...
math

[math]2006年京都大学理系後期数学問題6

問題 \(\tan{1^\circ}\)は有理数か。 方針 背理法を用いる。 解答 有理数であると仮定して、\(\tan{1^\circ}=\alpha\)と置く。$$\tan{(1+1)^\circ}=\f...
math

[math]2020年度京都大学理系問題2

問題 \(p\)を正の整数とする。\(\alpha,\ \beta\)は\(x\)に関する方程式\(x^2-2px-1=0\)の\(2\)つの解で、\(|\alpha| > 1\)であるとする。\((1)\)すべての正の整数\(n\...
math

[math]2000年東京大学理系前期第2問

問題 複素平面上の原点以外の相異なる\(2\)点\(P(\alpha), Q(\beta)\)を考える。\(P(\alpha), Q(\beta)\)を通る直線を\(l\)、原点から\(l\)に引いた垂線と\(l\)の交点を\(R(...
math

[math]一般に角の三等分が不可能であることの証明

\(\alpha\)が作図可能であるための必要十分条件は以下が成り立つような整数\(n\)と、実数列\(\sqrt{\alpha_0}, \sqrt{\alpha_1}, \cdots, \sqrt{\alpha_{n-1}}\)が存在す...
math

[math]1966年東京工業大学数学第5問

問題 相異なる\(3\)つの複素数がある。これらのうちから重複を許してとったどの\(2\)つの積も、これらの\(3\)数のどれかであるという。\(3\)数の組を求めよ。 方針 とりあえず文字を置いてみる。 解答 ...
タイトルとURLをコピーしました