math [math]2005年京都大学理系後期数学問題6 問題 \(n\)枚の\(100\)円玉と\(n+1\)枚の\(500\)円玉を同時に投げたとき、表の出た\(100\)円玉の枚数より表の出た\(500\)円玉の枚数の方が多い確率を求めよ。 方針 \(1\)枚余分なので、... 2021.10.12 math
math [math]1999年東京大学理系前期数学問題2 問題 複素数\(z_n\ (n=1,\ 2,\ \cdots)\)を\(z_1= 1, z_{n+1}=(3+4i)z_n+1\)によって定める。ただし\(i\)は虚数単位であり、また、複素数\(z = x + yi\)(\(x, ... 2021.10.11 math
math [math]1961年度東京工業大学数学問題6 問題 すべての\(x\)に対して\(|f^{\prime}(x)|<\frac{1}{2}\)となるとき、\((1)\)方程式\(f(x)-x=0\)がただ\(1\)つの実根をもつことを証明せよ。\((2)\)この実根を\(\... 2021.10.10 math
math [math]2006年京都大学理系後期数学問題6 問題 \(\tan{1^\circ}\)は有理数か。 方針 背理法を用いる。 解答 有理数であると仮定して、\(\tan{1^\circ}=\alpha\)と置く。$$\tan{(1+1)^\circ}=\f... 2021.10.09 math
math [math]2020年度京都大学理系問題2 問題 \(p\)を正の整数とする。\(\alpha,\ \beta\)は\(x\)に関する方程式\(x^2-2px-1=0\)の\(2\)つの解で、\(|\alpha| > 1\)であるとする。\((1)\)すべての正の整数\(n\... 2021.10.08 math
math [math]2000年東京大学理系前期第2問 問題 複素平面上の原点以外の相異なる\(2\)点\(P(\alpha), Q(\beta)\)を考える。\(P(\alpha), Q(\beta)\)を通る直線を\(l\)、原点から\(l\)に引いた垂線と\(l\)の交点を\(R(... 2021.10.07 math
math [math]一般に角の三等分が不可能であることの証明 \(\alpha\)が作図可能であるための必要十分条件は以下が成り立つような整数\(n\)と、実数列\(\sqrt{\alpha_0}, \sqrt{\alpha_1}, \cdots, \sqrt{\alpha_{n-1}}\)が存在す... 2021.10.07 math
math [math]1966年東京工業大学数学第5問 問題 相異なる\(3\)つの複素数がある。これらのうちから重複を許してとったどの\(2\)つの積も、これらの\(3\)数のどれかであるという。\(3\)数の組を求めよ。 方針 とりあえず文字を置いてみる。 解答 ... 2021.10.06 math
math [math]平成23年度京都大学大学院理学研究科(数学・数理解析学専攻) 数学系入試試験問題 基礎数学第1問 問題 \(x\)を複素数とする。\(4\)次複素正則行列$$\begin{equation}\left(\begin{array}{cccc}x & 1 & -1 & 1 \\1 & x & ... 2021.10.04 math
math [math]2007年京都大学理系数学乙問題6 問題 すべての実数で定義され何回でも微分できる関数\(f(x)\)が\(f(x) = 0, f^{\prime}(0) = 1\)を満たし、さらに任意の実数\(a, b\)に対して$$1+f(a)f(b)\ne 0$$であって$$f... 2021.10.03 math