math [math]1990年東京工業大学後期数学問題2 問題 \(n\)を\(2\)以上の整数とする。\((1)\) \(n-1\)次多項式\(P_n(x)\)と\(n\)次多項式\(Q_n(x)\)ですべての実数\(\theta\)に対して$$\sin{(2n\theta) } = n... 2022.04.06 math
math [math]2004年東京医科歯科大学前期数学問題1 問題 次の条件\((A), (B)\)を満たす関数\(f_n(x) (n=1, 2, 3, \cdots)\)を考える。\((A)\) \(f_n(x)\)は\(x\)の\(n\)次式で表される。\((B)\) 任意の実数\(\th... 2022.01.24 math
math [math]1990年東京大学理系前期数学問題2 問題 \(3\)次関数\(h(x) = px^3+qx^2+rx + s\)は次の条件\((i), (ii)\)をみたすものとする。\((i)\) \(h(1) = 1, h(-1) = -1\)\((ii)\) \(-1<x... 2021.12.09 math
math [math]1991年東京大学理系数学問題4 問題 \((1)\) 自然数\(n = 1, 2, 3, \cdots\)に対して、ある多項式\(p_n(x), q_n(x)\)が存在して、$$\sin{n\theta} = p_n(\tan{\theta})\cos^n{\th... 2021.12.09 math
math [math]1996年京都大学理系後期数学問題1 問題 \(n\)を自然数とする。\((1)\) すべての実数\(\theta\)に対し$$\cos{n\theta} = f_n(\cos{\theta}), \sin{n\theta} = g_n(\cos{\theta})\si... 2021.12.07 math