二次方程式

math

[math][東京大学][座標平面]2021年東京大学理系数学問題1

問題 \(a, b\)を実数とする。座標平面上の放物線$$C: y = x^2+ax+b$$は放物線\(y=-x^2\)と\(2\)つの共有点を持ち、一方の共有点の\(x\)座標は\(-1<x<0\)を満たし、他方の共有...
math

[math][東京工業大学][複素数平面]2017年東京工業大学数学問題5

問題 実数\(a, b, c\)に対して\(F(x) = x^4+ax^3+bx^2+ax + 1, f(x) = x^2+cx+1\)とおく。また、複素数平面内の単位円周から\(2\)点\(1, -1\)を除いたものを\(T\)と...
math

[math]2015年東京大学理系数学問題1

問題 正の実数\(a\)に対して、座標平面上で次の放物線を考える。$$C: y = ax^2+\frac{1-4a^2}{4a}$$\(a\)が正の実数全体を動くとき、\(C\)の通過する領域を図示せよ。 方針 問題を言...
math

[math]2021年東京工業大学前期数学問題2

問題 \(xy\)平面上の楕円$$E: \frac{x^2}{4} + y^2 = 1$$について、以下の問いに答えよ。\((1)\) \(a,\ b\)を実数とする。直線\(l:\ y = ax + b\)と楕円\(E\)が異なる...
タイトルとURLをコピーしました