京都大学

math

[math]1973年京都大学理系数学問題3

問題 正三角形\(ABC\)がある。点\(O\)を直線\(AB\)に関して\(C\)と反対側にとって\(\angle{AOB} = 60^\circ\)となるようにし、ベクトル\(\overrightarrow{OA},\overr...
math

[math]1973年京都大学文系数学問題4

問題 \(\mathbf{a, b, c}\)は平面上の単位ベクトルで、どの二つも\(120^\circ\)の角をなすものとする。このとき、この平面上の任意のベクトル\(\mathbf{x}\)に対して、\((1)\) \(\mat...
math

[math]2004年京都大学前期文系数学問題3

問題 三角形\(OAB\)において、\(\overrightarrow{a} = \overrightarrow{OA}, \overrightarrow{b} = \overrightarrow{OB}\)とする。$$\mid \...
math

[math]1972年京都大学数学文理共通問題文系問題3理系問題4

問題 三角形\(ABC\)の内部の一点\(P\)を頂点とする\(1\)つの平行四辺形を\(PQRS\)とする。\(P\)から\(Q\)に向かう半直線が三角形\(ABC\)の周を交わる点を\(Q^{\prime}\)とし、\(R^{\...
math

[math]1972年京都大学数学問題文理共通理系問題1文系問題1

問題 \(2\)つまたは\(3\)つのベクトルの加法について、次の法則が成立する。$$\overrightarrow{A} + \overrightarrow{B} = \overrightarrow{B} + \overright...
math

[math]1970年京都大学理系数学問題3

問題 空間に\(2\)直線\(l, g\)がある。\(l, g\)の上にそれぞれ\(3\)点\(A_1, A_2, A_3, B_1, B_2, B_3\)がこの順にあって、\(A_1A_2 = B_1B_2, A_2A_3 = B...
math

[math]1974年京都大学理系数学問題1

問題 \(0\leq \alpha < \beta < \gamma \leq 2\pi\)であって、$$\cos{\alpha} + \cos{\beta} + \cos{\gamma} = 0, \sin{\alph...
math

[math]1995年京都大学前期文理共通問題文系問題5理系問題5

問題 \(1\)番から\(7\)番まで番号のついた席が番号順に一列に並んでいる。客が順に到着して次のように着席していくとする。\(\text{(イ)}\) 両端の席および先客が着席している隣の席に次の客が着席する確率は、すべて等しい...
math

[math]2000年京都大学理系後期数学問題6

問題 関数\(f(x)\)を\(\displaystyle f(x) = \int_{0}^{x}{\frac{1}{1+t^2}dt}\)で定める。\((1)\) \(y = f(x)\)の\(x = 1\)における法線の方程式を...
math

[math]1998年京都大学前期文系問題3

問題 \(a, b\)は実数で\(a\ne b, ab\ne 0\)とする。このとき不等式$$\frac{x-b}{x+a}-\frac{x-a}{x+b} > \frac{x+a}{x-b}-\frac{x+b}{x-a}$...
タイトルとURLをコピーしました