医学部

math

[math]1996年東京医科歯科大学数学問題3

問題 関数\(f(x) = 4^x-(p+2)2^{x+1} + 4p+q+4\)は区間\(\)において、\(0\leq f(x)\leq 1\)をみたしているとする。\((1)\) 点\((p, q)\)が存在する範囲を座標平面上...
math

[math]2004年東京医科歯科大学前期数学問題3

問題 座標平面上に次の\(5\)点をとる。ただし\(a\)は正の定数とする。$$A(1, 0), B(-1, 0), C(1, a), D(-1, a), M(0, a)$$原点を\(O\)とするとき、以下の各問いに答えよ。\((1...
math

[math]2002年度東京医科歯科大学前期数学問題1

問題 座標空間内に定点\(A, B\)がある。不等式$$\overrightarrow{AB}\cdot \overrightarrow{AP}\geq \frac{\sqrt{3}}{2}\mid\overrightarrow{A...
math

[math]2021年東京医科歯科大学数学問題1

問題 \(0\)から\(9\)までの相異なる整数が\(1\)つずつ書かれた\(10\)個の球が、袋の中に入っている。この袋から球を無作為に\(1\)個取り出してはもとにもどす操作を\(3\)回繰り返したとき、取り出した球に書かれてい...
math

[math]2000年東京医科歯科大学数学問題2

問題 座標平面上にベクトル\(\overrightarrow{a} = (2, 1), \overrightarrow{b} = (1, 4), \overrightarrow{c} = (2, 3), \overrightarro...
math

[math]2005年東京医科歯科大学前期数学問題3

問題 次の条件\((i), (ii), (iii)\)を満たす関数\(f(x)\ (x > 0)\)を考える。\((i)\) \(f(1) = 0\)\((ii)\) 導関数\(f^{\prime}(x)\)が存在し、\(f^...
math

[math]2009年東京医科歯科大学前期数学問題3

問題 関数\(f(x) = \sin{2x} + a\cos{x}\)について、以下の各問いに答えよ。\((1)\) \(f(x)\)が区間\(\displaystyle -\frac{\pi}{2} < x < \fr...
math

[math]2022年東京医科歯科大学医学科数学問題1

問題 \(n\)を自然数とする。整数\(i, j\)に対し、\(xy\)平面上の点\(P_{i, j}\)の座標を$$\left(\cos{\frac{2\pi}{n}i} + \cos{\frac{2\pi}{n}j}, \sin...
math

[math]2022年東京医科歯科大学医学科数学問題2

問題 \(xy\)平面上の放物線\(P: y^2 = 4x\)上に異なる\(2\)点\(A, B\)をとり、\(A, B\)それぞれにおいて\(P\)への接線と直行する直線を\(n_A, n_B\)とする。\(a\)を正の数として、...
math

[math]2001年東京医科歯科大学前期数学問題3

問題 数の集合\(A\)に関する以下の諸条件を考える。ただし、\(n, k\)は\(n\geq k\geq 0\)を満たす整数とし、\(x, y\)は任意の数とする。条件\(Z:\) \(x\)が\(A\)の要素ならば\(x\)は整...
タイトルとURLをコピーしました