問題

math

[math]2009年東京医科歯科大学前期数学問題1

問題 座標平面または座標空間において、座標成分がすべて整数である点を格子点という。以下の各問に答えよ。\((1)\) \(C_1\)を座標平面上の半径\(0.5\)の円とする。\(C_1\)が内部に格子点を含まないとき、\(C_1\...
math

[math]1992年東京大学前期文系数学問題1

問題 \(x\)についての方程式\(px^2+(p^2-q)x-(2p-q-1)=0\)が解をもち、すべての解の実部が負となるような実数の組\((p, q)\)の範囲を\(pq\)平面上に図示せよ。(注)複素数\(a+bi\)(\(...
math

[math]1996年東京工業大学前期数学問題1

問題 \(2\)以上の整数\(n\)に対して方程式\(x_1+x_2+\cdots + x_n = x_1x_2\cdots x_n\)の正の整数解\((x_1, x_2, \cdots, x_n)\)を考える。ただし、たとえば\(...
math

[math]1988年京都大学文系B日程問題1

問題 \(0<x<1\)に対して、\(\displaystyle{\frac{1-x^3}{3} > \frac{1-x^2}{2}\sqrt{x}}\)が成り立つことを証明せよ。 方針 \(\sqrt{x}...
タイトルとURLをコピーしました