場合の数

math

[math]2001年東京医科歯科大学前期数学問題3

問題 数の集合\(A\)に関する以下の諸条件を考える。ただし、\(n, k\)は\(n\geq k\geq 0\)を満たす整数とし、\(x, y\)は任意の数とする。条件\(Z:\) \(x\)が\(A\)の要素ならば\(x\)は整...
math

[math]1998年東京大学前期理系数学問題2

問題 \(n\)を正の整数とする。連立不等式$$\begin{cases}x+y+z\leq n \\ -x+y-z\leq n \\ x-y-z\leq n\\ -x-y+z\leq n\end{cases}$$をみたす\(xyz...
math

[math]2009年東京医科歯科大学前期数学問題2

問題 正の実数\(a, b, c\)を係数とする\(2\)次式\(f(x) = ax^2+bx+c\)に関して、次の条件\(C\)を考える。条件\(C:\) \(3\)で割り切れないすべての整数\(x\)について、\(f(x)\)が...
math

[math]1987年東京医科歯科大学数学問題2

問題 \(1\)から\(m\)までの番号が\(1\)つずつ書いてある\(m\)枚のカードが入っている箱 がある。この箱から \(1\) 枚ずつ取り出してはまたもとに戻す操作を\(n\) 回 くり返し、第\(i\)回目に取り出されたカ...
math

[math]1992年東京大学前期文系数学問題3

問題 \(p_1 = 1, p_2 = 1, p_{n+2} = p_{n+1}+p_n\ (n\geq 1)\)によって定義される数列\(\{p_n\}\)をフィボナッチ数列といい、その一般項は$$p_n = \frac{1}{\...
math

[math]2006年度前期東京医科歯科大学数学問題1

問題 \((1)\) 次の\(3\)条件\((a), (b), (c)\)を満たす整数の組\((a_1, a_2, a_3, a_4, a_5)\)の個数を求めよ。$$(a) a_1 \geq 1$$ $$(b) a_5 \leq ...
math

[math]1999年東京大学理系前期数学問題2

問題 複素数\(z_n\ (n=1,\ 2,\ \cdots)\)を\(z_1= 1, z_{n+1}=(3+4i)z_n+1\)によって定める。ただし\(i\)は虚数単位であり、また、複素数\(z = x + yi\)(\(x, ...
タイトルとURLをコピーしました