多項式

math

[math][京都大学][整数]2023年京都大学理系数学問題6

問題 \(p\)を\(3\)以上の素数とする。また、\(\theta\)を実数とする。\((1)\) \(\cos{3\theta}\)と\(\cos{4\theta}\)を\(\cos{\theta}\)の式として表わせ。\((2...
math

[math]1993年東京工業大学前期数学問題4

問題 \(n\)を自然数、\(P(x)\)を\(n\)次の多項式とする。\(P(0), P(1), \cdots, P(n)\)が整数ならば、すべての整数\(k\)に対して、\(P(k)\)は整数であることを証明せよ。 方針 ...
math

[math]1984年東京大学理系数学問題3

問題 \(2\)以上の自然数\(k\)に対して$$f_k(x) = x^k-kx+k-1$$とおく。このとき、次のことを証明せよ。\((1)\) \(n\)次多項式\(g(x)\)が\((x-1)^2\)で割り切れるためには、\(g...
タイトルとURLをコピーしました