math [math]2005年東京大学理系後期数学問題3 問題 \(a\)は実数で、\(\displaystyle -\frac{1}{2}\leq a<2\)を満たすとする。\(xy\)平面の領域\(D, E\)を$$D: 1\leq x^2+y^2\leq 4, \ \ E: a... 2022.04.22 math
math [math]1999年東京大学後期理系数学問題1 問題 \(n\)を正の整数とする。\(\displaystyle -\frac{\pi}{2}\leq x\leq \frac{\pi}{2}\)の範囲において$$f_n(x) = \begin{cases}\displaystyl... 2022.02.22 math
math [math]1999年京都大学理系後期数学問題6 問題 \((1)\) \(f(x)\)は\(a\leq x\leq b\)で連続な関数とする。このとき、$$\frac{1}{b-a}\int_{a}^{b}{f(x)dx}=f(c)\\ a\leq c\leq b$$となる\(c... 2022.02.22 math
math [math]1997年京都大学後期理系数学問題6 問題 媒介変数表示された曲線\(\displaystyle C: x = e^{-t}\cos{t}, y = e^{-t}\sin{t}\ \left(0\leq t\leq \frac{\pi}{2}\right)\)を考える。... 2022.02.13 math
math [math]2006年東京大学後期数学問題3 問題 数列の和の公式$$\sum_{k=1}^{n}{k}=\frac{n(n+1)}{2}, \sum_{k=1}^{n}{k^2}=\frac{n(n+1)(2n+1)}{6}, \sum_{k=1}^{n}{k^3} = \l... 2022.02.03 math
math [math]2003年東京大学理系後期数学問題3 問題 \((1)\) すべての\(n\)について\(a_n\geq 2\)であるような数列\(\{a_n\}\)が与えられたとして、数列\(\{x_n\}\)に関する漸化式$$(A)\ x_{n+2}-a_{n+1}x_{n+1}+... 2022.01.29 math
math [math]1997年京都大学理系後期数学問題4 問題 次の連立方程式\((*)\)を考える。$$(*)\begin{cases}y = 2x^2-1 \\ z = 2y^2-1\\ x = 2z^2-1 \end{cases}$$\((1)\) \((x, y, z) = (a,... 2021.12.24 math
math [math]1989年京都大学理系後期数学理学部専用問題 問題 \(2\)次方程式\(ax^2-bx+3c=0\)において、\(a, b, c\)は\(1\)桁の自然数であり、二つの解\(\alpha, \beta\)は\(1<\alpha<2, 5<\beta<6... 2021.12.19 math
math [math]2000年京都大学後期理系数学問題3 問題 \(x, y\)平面上の点で\(x\)座標、\(y\)座標がともに整数である点を格子点という。\(a, k\)は整数で\(a\geq 2\)とし、直線\(L: ax + (a^2+1)y = k\)を考える。\((1)\) 直... 2021.12.17 math
math [math]1997年京都大学後期数学過去問問題2 問題 自然数\(n\)と\(n\)項数列\(a_k (1\leq k\leq n)\)が与えられていて、次の条件(イ)、(ロ)を満たしている。(イ)\(a_k (1\leq k\leq n)\)はすべて正整数で、すべて\(1\)と\... 2021.12.14 math