微分

math

[math]1999年京都大学理系後期数学問題6

問題 \((1)\) \(f(x)\)は\(a\leq x\leq b\)で連続な関数とする。このとき、$$\frac{1}{b-a}\int_{a}^{b}{f(x)dx}=f(c)\\ a\leq c\leq b$$となる\(c...
math

[math]1983年東京医科歯科大学数学問題1

問題 実数の集合\(\{x\mid a<x<b\}\)を\(I\)とし、\(f(x)\)を\(I\)で定義された関数とする。\(x_1<x_2\)となる\(I\)の任意の\(2\)数\(x_1, x_2\)に対して...
math

[math]2011年東京医科歯科大学前期数学問題2

問題 座標平面において、原点を\(O\)とし、次のような\(3\)点\(P, Q, R\)を考える。\((a)\) 点\(P\)は\(x\)軸上にあり、その\(x\)座標は正である。\((b)\) 点\(Q\)は第\(1\)象限にあ...
math

[math]2012年東京医科歯科大学前期数学問題3

問題 関数\(f(x) = x^3-x^2+x\)について、以下の各問に答えよ。\((1)\) \(f(x)\)はつねに増加する関数であることを示せ。\((2)\) \(f(x)\)の逆関数を\(g(x)\)とおく。\(x > 0\...
math

[math][東京医科歯科大学][座標平面]1988々東京医科歯科大学数学問題1

問題 \((1)\) 次の式で表される曲線\(C\)を書け。$$C: \mid y+1\mid \mid y-1\mid + \mid x\mid = 1\ (y\geq 0) $$\((2)\) 直線\(x = a\ (a &gt...
math

[math]1987年東京医科歯科大学数学問題1

問題 \(n\)を正の整数とするとき、次の問いに答えよ。\((1)\) \(\displaystyle S_n = \int_{0}^{1}{\frac{1-(-x^2)^n}{1+x^2}dx}\)の値を求めよ。\((2)\) \...
math

[math]1992年東京医科歯科大学前期数学問題1

問題 \((1)\) \(a > 0, b\geq 0\)のとき、次の値の大小関係を調べよ。$$\int_{b}^{b+1}{\frac{dx}{\sqrt{x+a}}}, \frac{1}{\sqrt{a+b}}, \frac{1...
math

[math]1994年東京工業大学数学問題3

問題 \((1)\) 定積分\(\displaystyle \int_{0}^{\pi}{e^{-x}\sin{x}dx}\)を求めよ。\((2)\) 極限値\(\displaystyle \lim_{n\to\infty}{\in...
math

[math]2018年東京工業大学数学問題3

問題 方程式$$e^x(1-\sin{x}) = 1$$について、次の問に答えよ。\((1)\) この方程式は負の実数解をもたないことを示せ。また、正の実数解を無限個もつことを示せ。\((2)\) この方程式の正の実数解を小さい順か...
math

[math]1976年京都大学理系数学問題4

問題 正の数列\(\{a_n\}\ (n=1, 2, 3, \cdots)\)が不等式$${a_n}^3+3{a_n}^2-\left(9+\frac{1}{n}\right)a_n+5 < 0$$をみたしているとき、次の\(...
タイトルとURLをコピーしました