微分

math

[math]1999年度防衛医科大学校数学問題2

問題 \(f(x) = x^2 + 4n\cos{x} + 1-4n\ (n = 1, 2, 3, \cdots)\)を考える。\((1)\) \(\displaystyle f(x) = 0, 0 < x < \fra...
math

[math]2021年京都大学理系数学問題2

問題 曲線\(y=\frac{1}{2}(x^2+1)\)上の点\(P\)における接線は\(x\)軸と交わるとし、その交点を\(Q\)とおく。線分\(PQ\)の長さを\(L\)とするとき、\(L\)が取りうる値の最小値を求めよ。 ...
math

[math]1998年東京大学前期数学問題1

問題 \(a\)は\(0\)でない実数とする。関数$$f(x) = (3x^2-4)\left(x-a+\frac{1}{a}\right)$$の極大値と極小値の差が最小となる\(a\)を求めよ。 方針 そのまま代入して...
math

[math]1999年東京大学前期理系数学問題6

問題 \(\displaystyle{\int_{0}^{\pi}{e^x\sin^2{x}dx} > 8}\)であることを示せ。ただし\(\displaystyle{\pi = 3.14\cdots}\)は円周率、\(\di...
math

[math]1984年東京大学理系数学問題3

問題 \(2\)以上の自然数\(k\)に対して$$f_k(x) = x^k-kx+k-1$$とおく。このとき、次のことを証明せよ。\((1)\) \(n\)次多項式\(g(x)\)が\((x-1)^2\)で割り切れるためには、\(g...
math

[math]1990年東京医科歯科大学数学問題2

問題 多項式の列\(f_1(x), f_2(x), \cdots, f_n(x), \cdots\)を次のように定める。$$\begin{eqnarray} f_1(x) & = & x + 2 \\ f_n...
math

[math]1993年京都大学後期理系数学問題3

問題 \(a\)は正の定数とする。不等式\(a^{x}\geq ax\)がすべての正の数\(x\)に対して成り立つという。このとき\(a\)はどのようなものか。 方針 「文字定数は分離せよ」。 解答 \(a,...
math

[math]1991年東京大学前期理系問題3

問題 定数\(p\)に対して、\(3\)次方程式$$x^3-3x-p = 0$$の実数解の中で最大のものと最小のものとの積を\(f(p)\)とする。ただし、実数解がただ一つのときには、その\(2\)乗を\(f(p)\)とする。\((...
math

[math]2005年前期東京大学理系数学問題1

問題 \(x > 0\)に対し\(f(x) = \frac{\log{x}}{x}\)とする。\((1)\) \(n = 1, 2, \cdots\)に対し\(f(x)\)の\(n\)次導関数は、数列\(\{a_n\}, \{...
math

[math]2002年京都大学理系数学第4問

問題 \((1)\) \(x \geq 0\)で定義された関数\(f(x) = \log(x + \sqrt{1+x^2})\)について、導関数\(f^{\prime}(x)\)を求めよ。\((2)\) 極方程式\(r = \the...
タイトルとURLをコピーしました