数学

math

[math]2005年前期東京大学理系数学問題1

問題 \(x > 0\)に対し\(f(x) = \frac{\log{x}}{x}\)とする。\((1)\) \(n = 1, 2, \cdots\)に対し\(f(x)\)の\(n\)次導関数は、数列\(\{a_n\}, \{...
math

[math]フィボナッチ数(Fibonacci number)の全て

フィボナッチ数とは フィボナッチ数とは、次の数列(フィボナッチ数列)によって定められる整数列である。$$a_0 = 0, a_1 = 1$$ $$a_{n+2} = a_{n+1} +a_{n}$$ 上の定義から分かる通り、負...
math

[math]1981年東京工業大学数学問題1

問題 \(\alpha\)は\(0 < \alpha < 1\)を満たす実数とする。任意の自然数\(n\)に対して、\(2^{n-1}\alpha\)の整数部分を\(a_n\)とし、\(2^{n-1}\alpha = a...
math

[math]2006年度前期東京医科歯科大学数学問題1

問題 \((1)\) 次の\(3\)条件\((a), (b), (c)\)を満たす整数の組\((a_1, a_2, a_3, a_4, a_5)\)の個数を求めよ。$$(a) a_1 \geq 1$$ $$(b) a_5 \leq ...
math

[math]2003年京都大学理系後期数学問題4

問題 \(\{a_n\}\)を正の数からなる数列とし、\(p\)を正の実数とする。このとき$$a_{n+1} > \frac{1}{2}a_n-p$$をみたす番号\(n\)が存在することを証明せよ。 方針 漸化式を...
math

[math]1983年東京大学理系数学第6問

問題 放物線\(y = \frac{3}{4}-x^2\)を\(y\)軸のまわりに回転して得られる曲面\(K\)を、原点を通り回転軸と\(45^\circ\)の角をなす平面\(H\)で切る。曲面\(K\)と平面\(H\)で囲まれた立...
math

[math]1999年京都大学理系後期数学問題3

問題 \(\alpha\)を正の定数として、数列\(a_n, b_n (n\geq 1)\)を次の式で定める。$$2a_{n+1} = \alpha(3{a_n}^2 + 2a_nb_n-{b_n}^2-a_n+b_n)$$ $$2...
math

[math]2001年京都大学文系後期数学問題2

問題 \(1\)または\(-1\)からなる数列\(a_1, a_2, \cdots, a_n\)において、そのうち\(m\)個が\(1\)で、\(n-m\)個は\(-1\)とする。\(k = 1, 2, \cdots, n\)に対し...
math

[math]2002年京都大学理系数学第4問

問題 \((1)\) \(x \geq 0\)で定義された関数\(f(x) = \log(x + \sqrt{1+x^2})\)について、導関数\(f^{\prime}(x)\)を求めよ。\((2)\) 極方程式\(r = \the...
math

[math]2005年前期東京医科歯科大学数学問題1

問題 \((1)\) 次のように定義される数列\(\{a_n\}\)の一般項を求めよ。$$a_1 = \frac{1}{2}, a_2 = \frac{7}{4}$$ $$a_n = \frac{5}{2}a_{n-1}-a_{n-...
タイトルとURLをコピーしました