整数問題

math

[math][京都大学]2024年京都大学理系数学問題6

問題 自然数\(k\)に対して、\(a_k = 2^{\sqrt{k}}\)とする。\(n\)を自然数とし、\(a_k\)の整数部分が\(n\)桁であるような\(k\)の個数を\(N_n\)とする。また、\(a_k\)の整数部分が\...
math

[math]2007年東京医科歯科大学前期数学問題3

問題 \(ad-bc = 1, a > 0\)を満たす整数\(a, b, c, d\)を考える。行列$$A = \begin{pmatrix}6 & 10\\ 10 & 7\end{pmatrix}, B = ...
math

[math]1984年東京工業大学数学問題1

問題 \(a, b\)を正の整数とする。\((i)\) \(c = a + b, d =a^2-ab+b^2\)とおくとき、不等式\(\displaystyle{1 < \frac{c^2}{d} \leq 4}\)が成り立つ...
math

[math]1986年東京工業大学数学問題1

問題 整数\(a_n = 19^n + (-1)^{n-1}2^{4n-3} (n = 1, 2, 3, \cdots)\)のすべてを割り切る素数を求めよ。 方針 小さい\(n\)で実験してみると、答えはすぐに分かる。 ...
math

[math]1992年京都大学後期文系問題1

問題 \(k\)は\(0\)または正の整数とする。方程式\(x^2-y^2 = k\)の解\((a, b)\)で、\(a, b\)がともに奇数であるものを奇数解とよぶ。\((1)\)方程式\(x^2-y^2=k\)が奇数解をもてば、...
math

[math]1977年京都大学数学文系問題5

問題 \(p\)が素数であれば、どんな自然数\(n\)についても、\(n^p-n\)は\(p\)で割り切れる。このことを、\(n\)についての数学的帰納法で証明せよ。 方針 丁寧に解法まで指定してくれているので、素直に従...
math

[math]2006年京都大学理系後期数学問題6

問題 \(\tan{1^\circ}\)は有理数か。 方針 背理法を用いる。 解答 有理数であると仮定して、\(\tan{1^\circ}=\alpha\)と置く。$$\tan{(1+1)^\circ}=\f...
math

[math]2021年東京大学理系数学問題6

問題 定数\(b, c, p, q, r\)に対し、$$x^4 + bx + c = (x^2+px+q)(x^2-px+r)$$が\(x\)についての恒等式であるとする。\((1)\)\(p \ne 0\)であるとき、\(q, r...
math

[math]1998年東京大学前期理系数学問題4

問題 実数\(a\)に対して\(k \leq a \leq k+1\)を満たす整数\(k\)を\(\)で表す。\(n\)を正の整数として、$$f(x)= \frac{x^2 (2\cdot 3^3 \cdot n-x)}{2^5\c...
タイトルとURLをコピーしました