文理共通

math

[math]1992年京都大学後期文理共通問題文系2理系1

問題 \(0\)でない\(x\)の整式\(f(x)\)に対し、\(\displaystyle F(x) = \int_{0}^{x}{f(t)dt}, G(x) = \int_{x}^{1}{f(t)dt}\)とおく。ある定数\(p...
math

[math]1994年京都大学後期数学文理共通問題1

問題 \(a+b+c = 0\)を満たす実数\(a, b, c\)について、\((\mid a \mid + \mid b\mid + \mid c \mid)^2\geq 2(a^2+b^2+c^2)\)が成り立つことを示せ。また...
math

[math]1972年京都大学文理共通文系問題2理系問題3

問題 実数または複素数の\(x, y, z, a\)について、\(x+y+z = a, x^3+y^3+z^3 = a^3\)の二式が成立するとき、\(x, y, z\)のうち少なくとも1つは\(a\)に等しいことを示せ。 方...
math

[math]2006年度京都大学文理共通問題文系3理系1

問題 \(1\)次式\(A(x), B(x), C(x)\)に対して\(\{A(x)\}^2+\{B(x)\}^2 = \{C(x)\}^2\)が成り立つとする。このとき\(A(x)\)は\(B(x)\)とともに\(C(x)\)の定...
math

[math]2006年度前期京都大学文理共通問題文系3理系1

問題 \(Q(x)\)を\(2\)次式とする。整式\(P(x)\)は\(Q(x)\)で割り切れないが、\(\{P(x)\}^2\)は\(Q(x)\)で割り切れるという。このとき\(2\)次方程式\(Q(x) = 0\)は重解をもつこ...
タイトルとURLをコピーしました