文系

math

[math]1994年京都大学前期文系数学問題4

問題 さいころを\(n\)回続けて投げるとき、\(k\)回目に出る目の数を\(X_k\)とし、\(Y_n = X_1+X_2+\cdots + X_n\)とする。\(Y_n\)が\(7\)で割り切れる確率を\(p_n\)とする。\(...
math

[math]1997年東京大学文系前期問題4

問題 \(0\leq t\leq 1\)をみたす実数\(t\)に対して、\(xy\)平面上の点\(A, B\)を$$A\left(\frac{2(t^2+t+2)}{3(t+1)}, -2\right), B\left(\frac{...
math

[math]1996年京都大学前期文系数学問題2

問題 \(0 < a\leq b\)をみたす実数\(a, b\)に対し、数列\(\{a_n\}, \{b_n\}\)を$$a_1=a, b_1=b, a_n = \sqrt{a_{n-1}b_{n-1}}, b_{n} = \...
math

[math]2000年京都大学文系前期数学問題2

問題 実数\(x_1, x_2, \cdots, x_n\ (n\geq 3)\)が条件\(x_{k-1}-2x_k+x_{k+1} > 0\ (2\leq k\leq n-1)\)をみたすとし、\(x_1, \cdots, ...
math

[math]1992年東京大学前期文系数学問題3

問題 \(p_1 = 1, p_2 = 1, p_{n+2} = p_{n+1}+p_n\ (n\geq 1)\)によって定義される数列\(\{p_n\}\)をフィボナッチ数列といい、その一般項は$$p_n = \frac{1}{\...
math

[math]1982年東京大学数学文系問題3

問題 \(a, b\)を整数として、\(x\)の\(4\)次方程式\(x^4 + ax^2+b=0\)の\(4\)つの解を考える。いま、\(4\)つの解の近似値\(-3.45, -0.61, 0.54, 3.42\)がわかっていて、...
math

[math]2002年度前期京都大学文系数学問題1

問題 数列\(\{a_n\}\)の初項\(a_1\)から第\(n\)項までの和を\(S_n\)と表す。この数列が、$$a_1 = 0, a_2 = 1, (n-1)^2a_n = S_n\ (n\geq 1)$$を満たすとき、一般項...
math

[math]1975年京都大学文系数学問題6

問題 \(a\)が実数で\(a<1\)のとき、数列\(x_0, x_1, x_2, \cdots, x_n, \cdots, \)を\(\displaystyle{x_0 = a, x_n = \frac{1}{2-x_{n-...
math

[math]1988年京都大学文系B日程問題1

問題 \(0<x<1\)に対して、\(\displaystyle{\frac{1-x^3}{3} > \frac{1-x^2}{2}\sqrt{x}}\)が成り立つことを証明せよ。 方針 \(\sqrt{x}...
math

[math]1992年京都大学後期文系問題1

問題 \(k\)は\(0\)または正の整数とする。方程式\(x^2-y^2 = k\)の解\((a, b)\)で、\(a, b\)がともに奇数であるものを奇数解とよぶ。\((1)\)方程式\(x^2-y^2=k\)が奇数解をもてば、...
タイトルとURLをコピーしました