東京医科歯科大学

math

[math]2009年東京医科歯科大学前期数学問題1

問題 座標平面または座標空間において、座標成分がすべて整数である点を格子点という。以下の各問に答えよ。\((1)\) \(C_1\)を座標平面上の半径\(0.5\)の円とする。\(C_1\)が内部に格子点を含まないとき、\(C_1\...
math

[math]2010年前期東京医科歯科大学数学問題3

問題 \(xy\)平面において、次の円\(C\)と楕円\(E\)を考える。$$\begin{eqnarray}C: x^2+y^2=1\\ E: x^2+\frac{y^2}{2}=1\end{eqnarray}$$また、\(C\)...
math

[math]1991年前期東京医科歯科大学数学問題2

問題 座標空間内の図形$$W = \{(x, y, z)\mid 3x^2+3y^2-z^2 \leq 0\}$$について、次の各問に答えよ。\((1)\) 原点\(O\)を中心とする半径\(1\)の球と\(W\)とが交わってできる...
math

[math]2010年東京医科歯科大学前期数学問題2

問題 (医学部)座標空間において、\(8\)点\(O(0, 0, 0, ), A(1, 0, 0), B(0, 1, 0), C(0, 0, 1), D(0, 1, 1), E(1, 0, 1), F(1, 1, 0), G(1, ...
math

[math]1983年東京医科歯科大学数学問題1

問題 実数の集合\(\{x\mid a<x<b\}\)を\(I\)とし、\(f(x)\)を\(I\)で定義された関数とする。\(x_1<x_2\)となる\(I\)の任意の\(2\)数\(x_1, x_2\)に対して...
math

[math]2010年東京医科歯科大学前期数学問題1

問題 \(a, b, c\)を相異なる正の実数とするとき、以下の各問に答えよ。\((1)\) 次の\(2\)数の大小を比較せよ。$$a^3+b^3, a^2b+b^2a$$\((2)\) 次の\(4\)数の大小を比較し、小さい方から...
math

[math]2011年東京医科歯科大学前期数学問題3

問題 自然数\(n\)に対し、$$\begin{eqnarray}S_n & = & \int_{0}^{1}{\frac{1-(-x)^n}{1+x}dx}\\ T_n & = & \sum_{k=...
math

[math]2011年東京医科歯科大学前期数学問題2

問題 座標平面において、原点を\(O\)とし、次のような\(3\)点\(P, Q, R\)を考える。\((a)\) 点\(P\)は\(x\)軸上にあり、その\(x\)座標は正である。\((b)\) 点\(Q\)は第\(1\)象限にあ...
math

[math]2011年東京医科歯科大学前期数学問題1

問題 ある硬貨を投げたとき、表と裏がそれぞれ\(\displaystyle \frac{1}{2}\)で出るとする。この硬貨を投げる操作を繰り返し行い、\(3\)回続けて表が出たときこの操作を終了する。自然数\(n\)に対し、操作が...
math

[math]2012年東京医科歯科大学前期数学問題3

問題 関数\(f(x) = x^3-x^2+x\)について、以下の各問に答えよ。\((1)\) \(f(x)\)はつねに増加する関数であることを示せ。\((2)\) \(f(x)\)の逆関数を\(g(x)\)とおく。\(x > 0\...
タイトルとURLをコピーしました