東京大学

math

[math][東京大学][空間求積]2024年東京大学理系数学第5問

問題 座標空間内に\(3\)点\(A(1, 0, 0), B(0, 1, 0), C(0, 0, 1)\)をとり、\(D\)を線分\(AC\)の中点とする。三角形\(ABD\)の周および内部を\(x\)軸のまわりに\(1\)回転させ...
math

[math][東京大学]2024年東京大学理系数学第4問

問題 \(\displaystyle f(x) = -\frac{\sqrt{2}}{4}x^2+4\sqrt{2}\)とおく。\(0 < t < 4\)を満たす実数\(t\)に対し、座標平面上の点\((t, f(t))...
math

[math][東京大学][確率]2024年東京大学理系数学第3問

問題 座標平面上を次の規則(i), (ii)に従って\(1\)秒ごとに動く点\(P\)を考える。(i) 最初に、\(P\)は点\((2, 1)\)にいる。(ii) ある時刻で\(P\)が点\((a, b)\)にいるとき、その\(1\...
math

[math][東京大学]2024年東京大学理系数学問題第1問

問題 座標空間内の点\(A\ (0, -1, 1)\)をとる。\(xy\)平面上の点\(P\)が次の条件(i), (ii), (iii)をすべて満たすとする。\(\ \ \ (i)\) \(P\)は原点\(O\)と異なる。\(\ \...
math

[math][東京大学]2024年東京大学理系数学第2問

問題 次の関数\(f(x)\)を考える。$$f(x) = \int_{0}^{1}{\frac{|t-x|}{1+t^2}dt}\ (0\leq x\leq 1)$$\((1)\) \(\displaystyle 0 < \a...
math

[math][東京大学]2024年東京大学理系数学第6問

問題 \(2\)以上の整数で、\(1\)とそれ自身以外に正の約数を持たない数を素数という。以下の問いに答えよ。\((1)\) \(f(x) = x^3+10x^2+20x\)とする。\(f(n)\)が整数になるような整数\(n\)を...
math

[math][複素数平面]2021東京大学理系数学問題2

問題 複素数\(a, b, c\)に対して整式\(f(z) = az^2+bz+c\)を考える。\(i\)を虚数単位とする。\((1)\) \(\alpha, \beta, \gamma\)を複素数とする。\(f(0) = \alp...
math

[math][東京大学][座標平面]2021年東京大学理系数学問題1

問題 \(a, b\)を実数とする。座標平面上の放物線$$C: y = x^2+ax+b$$は放物線\(y=-x^2\)と\(2\)つの共有点を持ち、一方の共有点の\(x\)座標は\(-1<x<0\)を満たし、他方の共有...
math

[math][東京大学][微分][計算問題]2021年東京大学理系数学問題3

問題 関数$$f(x)= \frac{x}{x^2+3}$$に対して、\(y = f(x)\)のグラフを\(C\)とする。点\(A(1, f(1))\)における\(C\)の接線を$$l: y = g(x)$$とする。\((1)\) ...
math

[math][東京大学][微分][最大値]2021年東京大学理系数学問題5

問題 \(\alpha\)を正の実数とする。\(0\leq \theta \leq \pi\)における\(\theta\)の関数\(f(\theta)\)を、座標平面上の\(2\)点\(A(-\alpha, -3), P(\thet...
タイトルとURLをコピーしました