東京大学

math

[math][東京大学][空間座標]2023年度東京大学理系数学問題6

問題 \(O\)を原点とする座標空間において、不等式\(|x|\leq 1, |y|\leq 1, |z|\leq 1\)の表す立方体を考える。その立方体の表面のうち、\(z < 1\)を満たす部分を\(S\)とする。以下、座...
math

[math][東京大学][空間ベクトル]2023年東京大学理系数学問題4

問題 座標空間内の\(4\)点\(O(0, 0, 0), A(2, 0, 0), B(1, 1, 1), C(1, 2, 3)\)を考える。\((1)\) \(\overrightarrow{OP} \perp \overright...
math

[math][東京大学][座標平面]2023年東京大学理系数学問題3

問題 \(a\)を実数とし、座標平面上の点\((0, a)\)を中心とする半径\(1\)の円の周を\(C\)とする。\((1)\) \(C\)が、不等式\(y > x^2\)の表す領域に含まれるような\(a\)の範囲を求めよ。...
math

[math][東京大学][確率]2023年東京大学理系数学問題2

問題 黒玉\(3\)個、赤玉\(4\)個、白玉\(5\)個が入っている袋から玉を\(1\)個ずつ取り出し、取り出した玉を順に横一列に\(12\)個すべて並べる。ただし、袋から個々の玉が取り出される確率は等しいものとする。\((1)\...
math

[math][東京大学][整式]2023年東京大学理系数学問題5

問題 整式\(f(x) = (x-1)^2(x-2)\)を考える。\((1)\) \(g(x)\)を実数を係数とする整式とし、\(g(x)\)を\(f(x)\)で割った余りを\(r(x)\)とおく。\({g(x)}^7\)を\(f(...
math

[math][東京大学][微分・積分]2023年東京大学理系数学問題1

問題 \((1)\) 正の整数\(k\)に対し、$$A_k = \int_{\sqrt{k\pi}}^{\sqrt{(k+1)\pi}}{|\sin{(x^2)}|dx}$$とおく。次の不等式が成り立つことを示せ。$$\frac{1...
math

[math]2005年東京大学理系後期数学問題3

問題 \(a\)は実数で、\(\displaystyle -\frac{1}{2}\leq a<2\)を満たすとする。\(xy\)平面の領域\(D, E\)を$$D: 1\leq x^2+y^2\leq 4, \ \ E: a...
math

[math]2006年東京大学前期数学問題3

問題 \(O\)を原点とする座標平面上に、\(y\)軸上の点\(P(0, p)\)と直線\(m: y = (\tan{\theta})x\)が与えられている。ここで、\(\displaystyle p > 1, 0<\thet...
math

[math]1978年東京大学理系数学問題3

問題 \(C\)を放物線\(\displaystyle y = \frac{3}{2}x^3-\frac{1}{3}\)とする。\(C\)上の点\(\displaystyle Q\left(t, \frac{3}{2}t^2-\fr...
math

[math]1975年東京大学理系数学問題6

問題 赤玉が\(1\)個と白玉が\(3\)個入った容器\(A\)と、ほかに赤玉と白玉の入った容器\(B\)と\(C\)がある。いま\(A, B, C\)から無作為に\(1\)個ずつ合計\(3\)個の球を取り出し、これらからやはり無作...
タイトルとURLをコピーしました