東京大学

math

[math]2006年東京大学後期数学問題3

問題 数列の和の公式$$\sum_{k=1}^{n}{k}=\frac{n(n+1)}{2}, \sum_{k=1}^{n}{k^2}=\frac{n(n+1)(2n+1)}{6}, \sum_{k=1}^{n}{k^3} = \l...
math

[math]2006年東京大学前期理系問題1

問題 \(O\)を原点とする座標平面上の\(4\)点\(P_1, P_2, P_3, P_4\)で、条件$$\overrightarrow{OP_{n-1}}+\overrightarrow{OP_{n+1}} = \frac{3}...
math

[math]1971年東京大学文理共通問題文系問題2理系問題2

問題 正数\(x\)を与えて、$$2a_1 = x, 2a_2 = {a_1}^2+1, \cdots, 2a_{n+1} = {a_n}^2+1, \cdots$$のように数列\(\{a_n\}\)を定めるとき、\((1)\) \...
math

[math]2003年東京大学理系後期数学問題3

問題 \((1)\) すべての\(n\)について\(a_n\geq 2\)であるような数列\(\{a_n\}\)が与えられたとして、数列\(\{x_n\}\)に関する漸化式$$(A)\ x_{n+2}-a_{n+1}x_{n+1}+...
math

[math]1992年東京大学前期文系数学問題3

問題 \(p_1 = 1, p_2 = 1, p_{n+2} = p_{n+1}+p_n\ (n\geq 1)\)によって定義される数列\(\{p_n\}\)をフィボナッチ数列といい、その一般項は$$p_n = \frac{1}{\...
math

[math]1994年東京大学前期理系数学問題2

問題 \(\displaystyle a = \sin^2{\frac{\pi}{5}}, b = \sin^2{\frac{2\pi}{5}}\)とおく。このとき、以下のことが成り立つことを示せ。\((1)\) \(a+b\)およ...
math

[math]2006年東京大学理系前期数学問題4

問題 次の条件を満たす組\(x, y, z\)を考える。条件\((A)\): \(x, y, z\)は正の整数で、\(x^2+y^2+z^2=xyz\)および\(x\leq y\leq z\)を満たす。以下の問に答えよ。\((1)\...
math

[math]1991年東京大学前期理系数学問題1

問題 平面上に正四面体が置いてある。平面と接している面の\(3\)辺のひとつを任意に選び、これを軸として正四面体をたおす。\(n\)回の操作の後に、最初に平面と接していた面が再び平面と接する確率を求めよ。 方針 漸化式を...
math

[math]2020年東京大学前期理系数学問題1

問題 \(a, b, c, p\)を実数とする。不等式$$\begin{eqnarray}ax^2+bx+c & > & 0 \\ bx^2+cx+a & > & 0 \\ cx^2+ax+b &a...
math

[math]2015年東京大学理系数学問題1

問題 正の実数\(a\)に対して、座標平面上で次の放物線を考える。$$C: y = ax^2+\frac{1-4a^2}{4a}$$\(a\)が正の実数全体を動くとき、\(C\)の通過する領域を図示せよ。 方針 問題を言...
タイトルとURLをコピーしました