楕円

math

[math][東京工業大学]2018年東京工業大学数学問題4

問題 \(xyz\)空間内において、連立不等式$$\frac{x^2}{4}+y^2\leq 1, \ \ |z|\leq 6$$により定まる領域を\(V\)とし、\(2\)点\((2, 0, 2), (-2, 0, -2)\)を通...
math

[math][東京医科歯科大学][座標平面]1998年東京医科歯科大学数学問題1

問題 次の問いに答えよ。\((1)\) \(AB = 2, AD = 4\)の長方形\(ABCD\)の\(2\)本の対角線の交点を\(E\)とする。点\(E\)を通り、長方形\(ABCD\)に含まれるような円の全体を考え、それらの中...
math

[math][東京医科歯科大学][複素数平面]1999年東京医科歯科大学数学問題2

問題 以下の\((1), (2), (3)\)のそれぞれについて、与えられた式を満たす複素数\(z\)の集合を複素数平面上に図示せよ。ただし\(i\)は虚数単位を表し、\(\bar{z}\)は\(z\)と共役な複素数を表す。\((1...
math

[math]2007年東京医科歯科大学前期数学問題3

問題 \(ad-bc = 1, a > 0\)を満たす整数\(a, b, c, d\)を考える。行列$$A = \begin{pmatrix}6 & 10\\ 10 & 7\end{pmatrix}, B = ...
math

[math]2010年前期東京医科歯科大学数学問題3

問題 \(xy\)平面において、次の円\(C\)と楕円\(E\)を考える。$$\begin{eqnarray}C: x^2+y^2=1\\ E: x^2+\frac{y^2}{2}=1\end{eqnarray}$$また、\(C\)...
math

[math]2021年東京工業大学前期数学問題2

問題 \(xy\)平面上の楕円$$E: \frac{x^2}{4} + y^2 = 1$$について、以下の問いに答えよ。\((1)\) \(a,\ b\)を実数とする。直線\(l:\ y = ax + b\)と楕円\(E\)が異なる...
タイトルとURLをコピーしました