正三角形

math

[math]2002年京都大学前期理系数学問題2

問題 半径\(1\)の円周上に相異なる\(3\)点\(A, B, C\)がある。\((1)\) \(AB^2 + BC^2 + CA^2 > 8\)ならば三角形\(ABC\)は鋭角三角形であることを示せ。\((2)\) \(AB^2...
math

[math]1973年京都大学文系数学問題4

問題 \(\mathbf{a, b, c}\)は平面上の単位ベクトルで、どの二つも\(120^\circ\)の角をなすものとする。このとき、この平面上の任意のベクトル\(\mathbf{x}\)に対して、\((1)\) \(\mat...
math

[math]1979年東京大学理系数学問題4

問題 平面上の点\(O\)を中心とする半径\(1\)の円周上の点\(P\)をとり、円の内部または周上に\(2\)点\(Q, R\)を、\(\triangle{PQR}\)が\(1\)辺の長さ\(\displaystyle \frac...
math

[math]1974年京都大学理系数学問題1

問題 \(0\leq \alpha < \beta < \gamma \leq 2\pi\)であって、$$\cos{\alpha} + \cos{\beta} + \cos{\gamma} = 0, \sin{\alph...
math

[math]2000年京都大学前期文理共通問題文系問題1理系問題1

問題 円に内接する四角形\(ABPC\)は次の条件(イ)、(ロ)を満たしているとする。(イ) 三角形\(ABC\)は正三角形である。(ロ) \(AP\)と\(BC\)の交点は線分\(BC\)を\(p: 1-p (0<p<...
math

[math]2020年東京工業大学前期数学問題2

問題 複素平面上の異なる\(3\)点\(A, B, C\)を複素数\(\alpha, \beta, \gamma\)で表す。ここで\(A, B, C\)は同一直線上にないと仮定する。\((1)\)\(\triangle{ABC}\)...
タイトルとURLをコピーしました