漸化式

math

[math]2015年東京工業大学前期数学問題1

問題 数列\(\{a_n\}\)を$$a_1 = 5, a_{n+1}=\frac{4a_n-9}{a_n-2}\ (n=1, 2, 3, \cdots)$$で定める。また数列\(\{b_n\}\)を$$b_n = \frac{a_...
math

[math]1994年京都大学前期文系数学問題4

問題 さいころを\(n\)回続けて投げるとき、\(k\)回目に出る目の数を\(X_k\)とし、\(Y_n = X_1+X_2+\cdots + X_n\)とする。\(Y_n\)が\(7\)で割り切れる確率を\(p_n\)とする。\(...
math

[math]2011年東京医科歯科大学前期数学問題1

問題 ある硬貨を投げたとき、表と裏がそれぞれ\(\displaystyle \frac{1}{2}\)で出るとする。この硬貨を投げる操作を繰り返し行い、\(3\)回続けて表が出たときこの操作を終了する。自然数\(n\)に対し、操作が...
math

[math]1991年東京大学前期理系数学問題1

問題 平面上に正四面体が置いてある。平面と接している面の\(3\)辺のひとつを任意に選び、これを軸として正四面体をたおす。\(n\)回の操作の後に、最初に平面と接していた面が再び平面と接する確率を求めよ。 方針 漸化式を...
math

[math]1972年東京医科歯科大学数学問題

問題 \(\displaystyle x_n = \int_{0}^{\frac{\pi}{2}}{\sin^{n}{\theta}d\theta}\ (n = 0, 1, 2, \cdots)\)のとき、次の問に答えよ。\((1)...
math

[math]2000年京都大学前期理系数学問題5

問題 数列\(\{c_n\}\)を次の式で定める。$$c_n = (n+1)\int_{0}^{1}{x^n\cos{\pi x}dx}\ (n=1, 2, , \cdots)$$このとき、\((1)\) \(c_n\)と\(c_{...
math

[math]2006年度前期東京大学数学問題5

問題 \(a_1 = \frac{1}{2}\)とし、数列\(\{a_n\}\)を漸化式$$a_{n+1} = \frac{a_{n}}{(1+a_n)^2}\ (n=1,\ 2,\ 3,\ \cdots)$$によって定める。このと...
math

[math]1990年東京医科歯科大学数学問題2

問題 多項式の列\(f_1(x), f_2(x), \cdots, f_n(x), \cdots\)を次のように定める。$$\begin{eqnarray} f_1(x) & = & x + 2 \\ f_n...
math

[math]2005年前期東京大学理系数学問題1

問題 \(x > 0\)に対し\(f(x) = \frac{\log{x}}{x}\)とする。\((1)\) \(n = 1, 2, \cdots\)に対し\(f(x)\)の\(n\)次導関数は、数列\(\{a_n\}, \{...
タイトルとURLをコピーしました