math [math]2022年東京大学理系前期数学問題1 問題 次の関数\(f(x)\)を考える。$$f(x) = (\cos{x})\log{(\cos{x})}-\cos{x}+\int_{0}^{x}{(\cos{t})\log{(\cos{t})}dt}\ \ \ \left(0\... 2022.02.26 math
math [math]1978年東京大学理系数学問題4 問題 行列\(A = \begin{pmatrix}\displaystyle\frac{1}{3} & 5 \\ 0 & 3\end{pmatrix}\)に対し、次の問いに答えよ。任意の整数\(n > 0\)に対し... 2022.02.25 math
math [math]1998年東京大学前期理系数学問題2 問題 \(n\)を正の整数とする。連立不等式$$\begin{cases}x+y+z\leq n \\ -x+y-z\leq n \\ x-y-z\leq n\\ -x-y+z\leq n\end{cases}$$をみたす\(xyz... 2022.02.23 math
math [math]1997年東京工業大学理系前期数学問題2 問題 \((1)\) 極限値\(\displaystyle \lim_{n\to\infty}{\sum_{k=n}^{2n}{\frac{1}{k}}}\)を求めよ。\((2)\) 任意の正数\(a\)に対して、\(\displa... 2022.02.22 math
math [math]1999年東京大学後期理系数学問題1 問題 \(n\)を正の整数とする。\(\displaystyle -\frac{\pi}{2}\leq x\leq \frac{\pi}{2}\)の範囲において$$f_n(x) = \begin{cases}\displaystyl... 2022.02.22 math
math [math]1999年京都大学理系後期数学問題6 問題 \((1)\) \(f(x)\)は\(a\leq x\leq b\)で連続な関数とする。このとき、$$\frac{1}{b-a}\int_{a}^{b}{f(x)dx}=f(c)\\ a\leq c\leq b$$となる\(c... 2022.02.22 math
math [math]1998年東京大学前期数学問題6 問題 \(xyz\)座標空間に\(5\)点\(A(1, 1, 0), B(-1, 1, 0), C(-1, -1, 0), D(1, -1, 0), P(0, 0, 3)\)をとる。四角錐\(PABCD\)の\(x^2+y^2\ge... 2022.02.21 math
math [math]1999年京都大学前期理系数学問題4 問題 以下の問に答えよ。ただし、\(\sqrt{2}, \sqrt{3}, \sqrt{6}\)が無理数であることは使ってよい。\((1)\) 有理数\(p, q, r\)について、\(p+q\sqrt{2}+r\sqrt{3} =... 2022.02.17 math
math [math]2007年京都大学前期理系甲問題1\((1)\) 問題 \(A = \begin{pmatrix}2 & 4 \\ -1 & -1\end{pmatrix}, E = \begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix... 2022.02.15 math
math [math]1997年京都大学後期理系数学問題6 問題 媒介変数表示された曲線\(\displaystyle C: x = e^{-t}\cos{t}, y = e^{-t}\sin{t}\ \left(0\leq t\leq \frac{\pi}{2}\right)\)を考える。... 2022.02.13 math