理系

math

[math][京都大学]2024年京都大学理系数学問題3

問題 座標空間の\(4\)店\(O, A, B, C\)は同一平面上にないとする。線分\(OA\)の中点を\(P\)、線分\(AB\)の中点を\(Q\)とする。実数\(x, y\)に対して、直線\(OC\)上の点\(X\)と、直線\...
math

[math][東京工業大学]2024年東京工業大学数学問題2

問題 実数全体を定義域にもつ微分可能な関数\(f(t), g(t)\)が次の\(6\)つの条件を満たしているとする。$$\begin{eqnarray}f^{\prime}(t) = -f(t)g(t),\ g^{\prime}(t...
math

[math][京都大学]2024年京都大学理系数学問題5

問題 \(a\)は\(a\geq 1\)を満たす定数とする。座標平面上で、次の\(4\)つの不等式が表す領域を\(D_a\)とする。$$x\geq0,\ \frac{e^{x}-e^{-x}}{2}\leq y,\ y\leq \f...
math

[math][東京大学]2024年東京大学理系数学第6問

問題 \(2\)以上の整数で、\(1\)とそれ自身以外に正の約数を持たない数を素数という。以下の問いに答えよ。\((1)\) \(f(x) = x^3+10x^2+20x\)とする。\(f(n)\)が整数になるような整数\(n\)を...
math

[math][京都大学]2024年京都大学理系数学問題4

問題 与えられた自然数\(a_0\)に対して、自然数からなる数列\(a_0, a_1, a_2, \cdots \)を次のように定める。$$a_{n+1} = \begin{cases}\displaystyle \frac{a_n...
math

[math][京都大学]2024年京都大学理学部特色入試第4問

問題 \(t\)を実数とする。投げたとき表と裏の出る確率がそれぞれ\(\displaystyle \frac{1}{2}\)であるコインを\(10\)回投げて、座標空間の点\(P_0, P_1, P_2, \cdots, P_{10...
math

[math][京都大学]2024年京都大学理学部特色入試第3問

問題 座標平面上の円\(D_1: x^2+y^2 = 64\)と円\(D_2: x^2+(y-4)^2 = 9\)に関して、以下の設問に答えよ。\((1)\) 座標平面上の\(3\)点\((0, 8), (3\sqrt{7}, 1)...
math

[math][京都大学]2024年京都大学理学部特色入試第1問

問題 \(2\)以上の自然数\(n\)に対して、\(n\)を割り切る素数の個数を\(f(n)\)とする。例えば\(n = 120\)のとき、\(120\)を割り切る素数は\(2\)と\(3\)と\(5\)なので、\(f(120) =...
math

[math][京都大学]2024年京都大学理学部特色入試第2問

問題 \(x^{100}-3x^{10}-2x-1 = 0\)を満たす実数\(x\)の個数を求めよ。 方針 \(-1<x<1\)のときは\(x^{100}\)はとても小さいので、無視できる。 解答 ...
math

[math][複素数平面]2021東京大学理系数学問題2

問題 複素数\(a, b, c\)に対して整式\(f(z) = az^2+bz+c\)を考える。\(i\)を虚数単位とする。\((1)\) \(\alpha, \beta, \gamma\)を複素数とする。\(f(0) = \alp...
タイトルとURLをコピーしました