積分

math

[math]2005年東京大学理系後期数学問題3

問題 \(a\)は実数で、\(\displaystyle -\frac{1}{2}\leq a<2\)を満たすとする。\(xy\)平面の領域\(D, E\)を$$D: 1\leq x^2+y^2\leq 4, \ \ E: a...
math

[math]2006年東京大学後期数学問題2

問題 \(a\)を正の実数、\(\theta\)を\(\displaystyle 0\leq \theta \leq \frac{\pi}{2}\)を満たす実数とする。\(xyz\)空間において、点\((a, 0, 0)\)と点\(...
math

[math]2007年東京大学前期理系数学問題6

問題 以下の問に答えよ。\((1)\) \(0 < x < a\)をみたす実数\(x, a\)に対し、次を示せ。$$\frac{2x}{a} < \int_{a-x}^{a+x}{\frac{1}{t}dt} &l...
math

[math]2000年京都大学理系後期数学問題6

問題 関数\(f(x)\)を\(\displaystyle f(x) = \int_{0}^{x}{\frac{1}{1+t^2}dt}\)で定める。\((1)\) \(y = f(x)\)の\(x = 1\)における法線の方程式を...
math

[math]2022年東京医科歯科大学医学科数学問題2

問題 \(xy\)平面上の放物線\(P: y^2 = 4x\)上に異なる\(2\)点\(A, B\)をとり、\(A, B\)それぞれにおいて\(P\)への接線と直行する直線を\(n_A, n_B\)とする。\(a\)を正の数として、...
math

[math]2022年東京大学理系数学問題4

問題 座標平面上の曲線$$C: y = x^3-x$$を考える。\((1)\) 座標平面上のすべての点\(P\)が次の条件\((i)\)を満たすことを示せ。\(\ \ \ (i)\) 点\(P\)を通る直線\(l\)で、曲線\(C\...
math

[math]2022年東京医科歯科大学医学科数学問題3

問題 曲線\(C: y = f(x)\ \ (0\leq x<1)\)が次の条件を満たすとする。\(\cdot f(0) = 0\)\(\cdot\) \(0<x<1\)のとき\(f^{\prime}(x) > 0...
math

[math]2022年京都大学理系数学問題5

問題 曲線\(\displaystyle C: y = \cos^3{x} \ \ \left(0\leq x\leq \frac{\pi}{2}\right)\)、\(x\)軸および\(y\)軸で囲まれる図形の面積を\(S\)とす...
math

[math]2022年東京大学理系前期数学問題1

問題 次の関数\(f(x)\)を考える。$$f(x) = (\cos{x})\log{(\cos{x})}-\cos{x}+\int_{0}^{x}{(\cos{t})\log{(\cos{t})}dt}\ \ \ \left(0\...
math

[math]1999年東京大学後期理系数学問題1

問題 \(n\)を正の整数とする。\(\displaystyle -\frac{\pi}{2}\leq x\leq \frac{\pi}{2}\)の範囲において$$f_n(x) = \begin{cases}\displaystyl...
タイトルとURLをコピーしました