math [math][東京医科歯科大学][微分]1998年東京医科歯科大学数学問題3 問題 \(x \geq 0\)を定義域とする関数の列$$f_0(x), f_1(x), \cdots, f_n(x), \cdots$$を次式による帰納的に定義する。$$f_0(x) = 1, f_n(x) = \int_{0}^{... 2022.10.17 math
math [math]2011年東京医科歯科大学前期数学問題3 問題 自然数\(n\)に対し、$$\begin{eqnarray}S_n & = & \int_{0}^{1}{\frac{1-(-x)^n}{1+x}dx}\\ T_n & = & \sum_{k=... 2022.02.08 math
math [math]1984年東京大学理系数学問題3 問題 \(2\)以上の自然数\(k\)に対して$$f_k(x) = x^k-kx+k-1$$とおく。このとき、次のことを証明せよ。\((1)\) \(n\)次多項式\(g(x)\)が\((x-1)^2\)で割り切れるためには、\(g... 2021.12.14 math