math [math]2005年京都大学後期文理共通問題文系問題4理系問題4 問題 四面体\(OABC\)において、三角形\(ABC\)の重心を\(G\)とし、線分\(OG\)を\(t: 1-t\ (0 < t < 1)\)に内分する点を\(P\)とする。また、直線\(AP\)と面\(OBC\)と... 2022.04.24 math
math [math]2007年東京医科歯科大学前期数学問題1 問題 以下の各問に答えよ。\((1)\) 底面の半径が\(r\)、高さが\(h\)の直円錐の側面積を\(r\)と\(h\)を用いて表わせ。\((2)\) 座標平面上の\(4\)点\(\displaystyle A\left(\fra... 2022.04.23 math
math [math]1979年京都大学文系数学問題1 問題 平面上に\(6\)つの定点\(A_1, A_2, A_3, A_4, A_5, A_6\)があって、どの\(3\)点も一直線上にはない。この\(6\)点のうちから\(3\)点を任意に選ぶ。選んだ\(3\)点を頂点とする三角形の... 2022.04.22 math
math [math]2006年東京工業大学前期数学問題4 問題 空間内の四面体\(ABCD\)を考える。辺\(AB, BC, CD, DA\)の中点を、それぞれ\(K, L, M, N\)とする。\((1)\) \(4\overrightarrow{MK}\cdot \overrighta... 2022.04.22 math
math [math]2005年東京大学理系後期数学問題3 問題 \(a\)は実数で、\(\displaystyle -\frac{1}{2}\leq a<2\)を満たすとする。\(xy\)平面の領域\(D, E\)を$$D: 1\leq x^2+y^2\leq 4, \ \ E: a... 2022.04.22 math
math [math]1978年京都大学数学文理共通問題文系問題2理系問題2 問題 三角形\(OAB\)の重心\(G\)を通る直線が、辺\(OA, OB\)とそれぞれ辺上の点\(P, Q\)で交わっているとする。\(\overrightarrow{OP} 0 h\overrightarrow{OA}, \ov... 2022.04.21 math
math [math]1976年京都大学文理共通問題文系問題2理系問題2 問題 \(1\)つの平面内にある、いくつかの\(0\)でないベクトルからなる集合\(S\)が条件"\(\mathbf{a, b}\)が\(S\)のベクトルであれば、\(\displaystyle \frac{2(\mathbf{a,... 2022.04.20 math
math [math]1975年京都大学理系数学問題4 問題 平面上で、\(3\)つの定点\(A, B, C\)と定円の周上を動く点\(P\)がある。ベクトル\(\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC}... 2022.04.19 math
math [math]1973年京都大学理系数学問題3 問題 正三角形\(ABC\)がある。点\(O\)を直線\(AB\)に関して\(C\)と反対側にとって\(\angle{AOB} = 60^\circ\)となるようにし、ベクトル\(\overrightarrow{OA},\overr... 2022.04.19 math
math [math]1973年京都大学文系数学問題4 問題 \(\mathbf{a, b, c}\)は平面上の単位ベクトルで、どの二つも\(120^\circ\)の角をなすものとする。このとき、この平面上の任意のベクトル\(\mathbf{x}\)に対して、\((1)\) \(\mat... 2022.04.18 math