過去問

math

[math]1991年東京工業大学後期数学問題1

問題 \(10\)進法表示の\(n\)桁の正の整数で、隣り合う桁の数字が互いに相異なるような数の個数を\(a_n\)とするとき、次の問いに答えよ。\((1)\) \(a_n\)を求めよ。\((2)\) 上の数のうちで、\(1\)の位...
math

[math]1990年東京工業大学後期数学問題2

問題 \(n\)を\(2\)以上の整数とする。\((1)\) \(n-1\)次多項式\(P_n(x)\)と\(n\)次多項式\(Q_n(x)\)ですべての実数\(\theta\)に対して$$\sin{(2n\theta) } = n...
math

[math]1990年東京工業大学後期数学問題1

問題 \((x+1)(x-2)\)の小数第\(1\)位を四捨五入したものが\(1+5x\)に等しくなるような実数\(x\)を求めよ。 方針 範囲を絞らなくてはいけない。例えば実数\(x\)の小数第\(1\)位を四捨五入し...
math

[math]1972年京都大学数学問題文理共通理系問題1文系問題1

問題 \(2\)つまたは\(3\)つのベクトルの加法について、次の法則が成立する。$$\overrightarrow{A} + \overrightarrow{B} = \overrightarrow{B} + \overright...
math

[math]2021年東京医科歯科大学数学問題1

問題 \(0\)から\(9\)までの相異なる整数が\(1\)つずつ書かれた\(10\)個の球が、袋の中に入っている。この袋から球を無作為に\(1\)個取り出してはもとにもどす操作を\(3\)回繰り返したとき、取り出した球に書かれてい...
math

[math]1970年京都大学理系数学問題3

問題 空間に\(2\)直線\(l, g\)がある。\(l, g\)の上にそれぞれ\(3\)点\(A_1, A_2, A_3, B_1, B_2, B_3\)がこの順にあって、\(A_1A_2 = B_1B_2, A_2A_3 = B...
math

[math]2000年東京医科歯科大学数学問題2

問題 座標平面上にベクトル\(\overrightarrow{a} = (2, 1), \overrightarrow{b} = (1, 4), \overrightarrow{c} = (2, 3), \overrightarro...
math

[math]2022年東京大学理系数学問題6

問題 \(O\)を原点とする座標平面上で考える。\(0\)以上の整数\(k\)に対して、ベクトル\(\overrightarrow{v_k}\)を$$\overrightarrow{v_k} = \left(\cos{\frac{2...
math

[math]2022年東京大学理系数学問題3

問題 \(O\)を原点とする座標平面上で考える。座標平面上の\(2\)点\(S(x_1, y_1), T(x_2, y_2)\)に対し、点\(S\)が点\(T\)から十分離れているとは、$$\mid x_1-x_2 \mid \ge...
math

[math]2006年東京大学後期数学問題2

問題 \(a\)を正の実数、\(\theta\)を\(\displaystyle 0\leq \theta \leq \frac{\pi}{2}\)を満たす実数とする。\(xyz\)空間において、点\((a, 0, 0)\)と点\(...
タイトルとURLをコピーしました