過去問

math

[math]1976年京都大学理系数学問題4

問題 正の数列\(\{a_n\}\ (n=1, 2, 3, \cdots)\)が不等式$${a_n}^3+3{a_n}^2-\left(9+\frac{1}{n}\right)a_n+5 < 0$$をみたしているとき、次の\(...
math

[math]2015年東京大学理系数学問題1

問題 正の実数\(a\)に対して、座標平面上で次の放物線を考える。$$C: y = ax^2+\frac{1-4a^2}{4a}$$\(a\)が正の実数全体を動くとき、\(C\)の通過する領域を図示せよ。 方針 問題を言...
math

[math]2000年京都大学前期理系数学問題5

問題 数列\(\{c_n\}\)を次の式で定める。$$c_n = (n+1)\int_{0}^{1}{x^n\cos{\pi x}dx}\ (n=1, 2, , \cdots)$$このとき、\((1)\) \(c_n\)と\(c_{...
math

[math]1994年京都大学後期理系問題6

問題 \(n\)を自然数とし、\(\displaystyle I_n = \int_{1}^{e}{(\log{x})^ndx}\)とおく。\((1)\) \(I_{n+1}\)を\(I_n\)を用いて表わせ。\((2)\) すべて...
math

[math]1988年東京工業大学数学問題5

問題 \(\displaystyle \lim_{n\to \infty}{\left(\frac{_{3n}\mathbb{C}_{n}}{_{2n}\mathbb{C}_{n}}\right)^{\frac{1}{n}}}\)を...
math

[math]2006年京都大学理系後期数学問題5

問題 \(H > 0, R > 0\)とする。空間内において、原点\(O\)と点\(P(R, 0, H)\)を結ぶ線分を、\(z\)軸のまわりに回転させてできる容器がある。この容器に水を満たし、原点から水面までの高さが\(h\)のと...
math

[math]2002年度東京医科歯科大学前期数学問題2

問題 \((1)\) \(xy\)平面上の曲線$$y = (x-\alpha)^2(x-\beta) (\alpha, \betaは定数)$$の変曲点の座標を\(\alpha, \beta\)を用いて表わせ。\((2)\) \(xy...
math

[math]2020年前期東京工業大学数学問題1

問題 次の問に答えよ。\((1)\) \(\mid x^2-x-23\mid\)の値が、\(3\)を法として\(2\)に合同である正の整数\(x\)をすべて求めよ。\((2)\) \(k\)個の連続した正の整数\(x_1, \cdo...
math

[math]2008年度前期東京工業大学数学問題3

問題 いびつなサイコロがあり、\(1\)から\(6\)までのそれぞれの目が出る確率が\(\displaystyle \frac{1}{6}\)とは限らないとする。このサイコロを\(2\)回振ったとき同じ目が出る確率を\(P\)とし、...
math

[math][東京工業大学]2018年度前期東京工業大学数学問題2

問題 次の問に答えよ。\((1)\) \(35x + 91y + 65z = 3\)を満たす整数の組\((x, y, z)\)を一組求めよ。\((2)\) \(35x + 91y + 65z = 3\)を満たす整数の組\((x, y...
タイトルとURLをコピーしました