math [math]2010年前期東京医科歯科大学数学問題3 問題 \(xy\)平面において、次の円\(C\)と楕円\(E\)を考える。$$\begin{eqnarray}C: x^2+y^2=1\\ E: x^2+\frac{y^2}{2}=1\end{eqnarray}$$また、\(C\)... 2022.02.19 math
math [math]2011年東京医科歯科大学前期数学問題2 問題 座標平面において、原点を\(O\)とし、次のような\(3\)点\(P, Q, R\)を考える。\((a)\) 点\(P\)は\(x\)軸上にあり、その\(x\)座標は正である。\((b)\) 点\(Q\)は第\(1\)象限にあ... 2022.02.07 math
math [math][東京医科歯科大学][座標平面]1988々東京医科歯科大学数学問題1 問題 \((1)\) 次の式で表される曲線\(C\)を書け。$$C: \mid y+1\mid \mid y-1\mid + \mid x\mid = 1\ (y\geq 0) $$\((2)\) 直線\(x = a\ (a >... 2022.01.29 math
math [math]1983年東京大学理系数学第6問 問題 放物線\(y = \frac{3}{4}-x^2\)を\(y\)軸のまわりに回転して得られる曲面\(K\)を、原点を通り回転軸と\(45^\circ\)の角をなす平面\(H\)で切る。曲面\(K\)と平面\(H\)で囲まれた立... 2021.11.25 math
math [math]2014年東京大学理系数学問題1 問題 \(1\)辺の長さが\(1\)の正方形を底面とする四角柱\(OABC-DEFG\)を考える。\(3\)点\(P, Q, R\)を、それぞれ辺\(AE\)、辺\(BF\)、辺\(CG\)上に、\(4\)点\(O, P, Q, R... 2021.10.21 math