denovo

stata

[Stata][time data]Stataでの時間、日付データの扱いについて

Stata Stataは時間の扱いについては割と出来が悪いイメージがあったが、完全に自分の落ち度であった。上記リンクの二番目のドキュメントをしっかりと理解すれば、Stataの時間データは何も怖くない。 Stat...
math

[math][京都大学][ベクトル]2023年京都大学理系数学問題2

問題 空間内の\(4\)点\(O, A, B, C\)は同一平面上にないとする。点\(D, P, Q\)を次のように定める。点\(D\)は\(\overrightarrow{OD} = \overrightarrow{OA} + 2...
math

[math][京都大学][空間図形][積分]2023年京都大学理系数学問題5

問題 \(O\)を原点とする\(xyz\)空間において、点\(P\)と点\(Q\)は次の\(3\)つの条件\((a), (b), (c)\)を満たしている。\((a)\) 点\(P\)は\(x\)軸上にある。\((b)\) 点\(Q...
math

[math][京都大学][確率]2023年京都大学理系数学問題3

問題 \(n\)を自然数とする。\(1\)個のさいころを\(n\)回投げ、出た目を順に\(X_1, X_2, \cdots, X_n\)とし、\(n\)個の数の積\(X_1X_2\cdots X_n\)を\(Y\)とする。\((1)...
math

[math][東京工業大学][整数]2023年東京工業大学数学問題2

問題 方程式$$(x^3-x)^2(y^3-y) = 86400$$を満たす整数\((x, y)\)をすべて求めよ。 方針 \(86400 = 2^7\cdot 3^3\cdot 5^2\)であるから、左辺を因数分解する...
math

[math][東京工業大学][微分]2023年東京工業大学数学問題1

問題 実数\(\displaystyle \int_{0}^{2023}{\frac{2}{x+e^x}dx}\)の整数部分を求めよ。 方針 まず\(0\leq x\leq 2023\)で\(\displaystyle ...
math

[math][京都大学][整数]2023年京都大学理系数学問題6

問題 \(p\)を\(3\)以上の素数とする。また、\(\theta\)を実数とする。\((1)\) \(\cos{3\theta}\)と\(\cos{4\theta}\)を\(\cos{\theta}\)の式として表わせ。\((2...
math

[math][京都大学][微分]2023年京都大学理系数学問題4

問題 次の関数\(f(x)\)の最大値と最小値を求めよ。$$f(x) = e^{-x^2}+\frac{1}{4}x^2+1+\frac{1}{e^{-x^2}+\frac{1}{4}x^2+1}\ \ \ (-1\leq x\le...
math

[math][京都大学][計算問題]2023年京都大学理系数学問題1

問題 次の各問に答えよ。(\(35\)点)問\(1\ \ \) 定積分\(\displaystyle \int_{1}^{4}{\sqrt{x}\log{(x^2)}dx}\)の値を求めよ。問\(2\ \ \) 整式\(x^{202...
math

[math][東京医科歯科大学][微分]2023年東京医科歯科大学数学問題3

問題 \(a, b\)を正の実数、\(p\)を\(a\)より小さい正の実数とし、すべての実数\(x\)について$$\int_{p}^{f(x)}{\frac{a}{u(a-u)}du} = bx\ \ 0<f(x)<a$...
タイトルとURLをコピーしました