math

[math]1997年京都大学後期理系数学問題6

問題 媒介変数表示された曲線\(\displaystyle C: x = e^{-t}\cos{t}, y = e^{-t}\sin{t}\ \left(0\leq t\leq \frac{\pi}{2}\right)\)を考える。...
math

[math]2010年東京医科歯科大学前期数学問題2

問題 (医学部)座標空間において、\(8\)点\(O(0, 0, 0, ), A(1, 0, 0), B(0, 1, 0), C(0, 0, 1), D(0, 1, 1), E(1, 0, 1), F(1, 1, 0), G(1, ...
math

[math]1984年東京工業大学数学問題4

問題 定積分\(\displaystyle \int_{0}^{1}{e^x\mid x-a \mid dx}\)を最小にする\(a\)を求めよ。 方針 もちろん場合分けが必要になる。 解答 問題文の積分を\...
math

[math]2022年武蔵中学校算数問題4

問題 図のような、点\(O\)が中心の大小\(2\)つの半円があります。点\(P\)は点\(A\)を出発して大きい半円の円周上を毎秒\(3cm\)の速さで点\(B\)まで進み、\(B\)で\(2\)秒間停止した後、再び同じ円周上を同...
math

[math]1983年東京医科歯科大学数学問題1

問題 実数の集合\(\{x\mid a<x<b\}\)を\(I\)とし、\(f(x)\)を\(I\)で定義された関数とする。\(x_1<x_2\)となる\(I\)の任意の\(2\)数\(x_1, x_2\)に対して...
math

[math]1985年京都大学理系数学問題4

問題 実数\(r(r>0)\)に対して、下の方程式\(\text{①}\)の定める球面と、\(\text{②}\)の定める平面の共通部分を\(D\)とする。$$\text{①}x^2+y^2+z^2=\frac{1}{3}(r^2+...
math

[math]1979年東京大学文理共通問題文系問題4理系問題3

問題 \(a\)を正の整数とし、数列\(\{u_n\}\)を次のように定める。$$\begin{cases}u_1 = 2, u_2=a^2+2\\ u_n = au_{n-2}-u_{n-1}, \ n=3, 4, 5, \cdo...
math

[math]1997年東京大学文系前期問題4

問題 \(0\leq t\leq 1\)をみたす実数\(t\)に対して、\(xy\)平面上の点\(A, B\)を$$A\left(\frac{2(t^2+t+2)}{3(t+1)}, -2\right), B\left(\frac{...
art

[Leisure]国立科学博物館地球史ナビゲーター

国立科学博物館 もちろん年間パスポートも持っているくらい好きな場所。 地球史ナビゲーター アロサウルスがお出迎え。 全ては原子から。 全ては原子から。 地球史ナビゲーター。 ...
math

[math]2010年東京医科歯科大学前期数学問題1

問題 \(a, b, c\)を相異なる正の実数とするとき、以下の各問に答えよ。\((1)\) 次の\(2\)数の大小を比較せよ。$$a^3+b^3, a^2b+b^2a$$\((2)\) 次の\(4\)数の大小を比較し、小さい方から...
タイトルとURLをコピーしました