不等式

math

[math]2014年東京医科歯科大学数学問題3

問題 \(a\)を正の実数、\(k\)を自然数とし、\(x > 0\)で定義される関数$$f(x) = \int_{a}^{ax}{\frac{k+\sqrt{u}}{ku}du}$$を考える。このとき以下の各問いに答えよ。\((1...
math

[math]2013年東京医科歯科大学前期数学問題1

問題 \((1)\) 実数\(\alpha, \beta\)が\(\displaystyle 0 < \alpha < \frac{\pi}{2}, 0 < \beta < \frac{\pi}{2}, \t...
math

[math]1998年京都大学前期文系問題3

問題 \(a, b\)は実数で\(a\ne b, ab\ne 0\)とする。このとき不等式$$\frac{x-b}{x+a}-\frac{x-a}{x+b} > \frac{x+a}{x-b}-\frac{x+b}{x-a}$...
math

[math]2010年東京医科歯科大学前期数学問題1

問題 \(a, b, c\)を相異なる正の実数とするとき、以下の各問に答えよ。\((1)\) 次の\(2\)数の大小を比較せよ。$$a^3+b^3, a^2b+b^2a$$\((2)\) 次の\(4\)数の大小を比較し、小さい方から...
math

[math]1986年京都大学文理共通問題1

問題 すべては\(0\)でない\(n\)個の実数\(a_1, a_2, \cdots, a_n\)があり、\(a_1\leq a_2\leq \cdots\leq a_n\)かつ\(a_1+a_2+\cdots + a_n = 0\...
math

[math]1989年京都大学理系数学問題2

問題 \(n\)個\((n\geq 3)\)の実数\(a_1, a_2, \cdots, a_n\)があり、各\(a_i\)は他の\(n-1\)個の相加平均より大きくはないという。このような\(a_1, a_2, \cdots, a...
math

[math]1999年東京大学前期理系数学問題6

問題 \(\displaystyle{\int_{0}^{\pi}{e^x\sin^2{x}dx} > 8}\)であることを示せ。ただし\(\displaystyle{\pi = 3.14\cdots}\)は円周率、\(\di...
math

[math]1994年京都大学後期数学文理共通問題1

問題 \(a+b+c = 0\)を満たす実数\(a, b, c\)について、\((\mid a \mid + \mid b\mid + \mid c \mid)^2\geq 2(a^2+b^2+c^2)\)が成り立つことを示せ。また...
math

[math]1988年京都大学文系B日程問題1

問題 \(0<x<1\)に対して、\(\displaystyle{\frac{1-x^3}{3} > \frac{1-x^2}{2}\sqrt{x}}\)が成り立つことを証明せよ。 方針 \(\sqrt{x}...
math

[math]1969年東京工業大学数学問題1

問題 実数\(a, b, c, x, y, z, p\)が次の\(4\)条件を満たしている。$$\begin{cases}a^2-b^2-c^2 > 0\\ ax + by+cz = p\\ ap < 0 \\ x > 0\e...
タイトルとURLをコピーしました