数列

math

[math]1975年東京大学理系数学問題6

問題 赤玉が\(1\)個と白玉が\(3\)個入った容器\(A\)と、ほかに赤玉と白玉の入った容器\(B\)と\(C\)がある。いま\(A, B, C\)から無作為に\(1\)個ずつ合計\(3\)個の球を取り出し、これらからやはり無作...
math

[math]1991年東京工業大学後期数学問題1

問題 \(10\)進法表示の\(n\)桁の正の整数で、隣り合う桁の数字が互いに相異なるような数の個数を\(a_n\)とするとき、次の問いに答えよ。\((1)\) \(a_n\)を求めよ。\((2)\) 上の数のうちで、\(1\)の位...
math

[math]1990年東京工業大学後期数学問題2

問題 \(n\)を\(2\)以上の整数とする。\((1)\) \(n-1\)次多項式\(P_n(x)\)と\(n\)次多項式\(Q_n(x)\)ですべての実数\(\theta\)に対して$$\sin{(2n\theta) } = n...
math

[math]2022年東京工業大学数学問題5

問題 \(a\)は\(\displaystyle 0 < a \leq \frac{\pi}{4}\)を満たす実数とし、\(\displaystyle f(x) = \frac{4}{3}\sin{\left(\frac{\p...
math

[math]2022年東京医科歯科大学医学科数学問題1

問題 \(n\)を自然数とする。整数\(i, j\)に対し、\(xy\)平面上の点\(P_{i, j}\)の座標を$$\left(\cos{\frac{2\pi}{n}i} + \cos{\frac{2\pi}{n}j}, \sin...
math

[math]2022年京都大学理系数学問題6

問題 数列\(\{x_n\}, \{y_n\}\)を次の式$$\begin{eqnarray}x_1 = 0, x_{n+1} = x_n+n+2\cos{\left(\frac{2\pi x_n}{3}\right)}\ \ \ ...
math

[math]1997年東京工業大学理系前期数学問題2

問題 \((1)\) 極限値\(\displaystyle \lim_{n\to\infty}{\sum_{k=n}^{2n}{\frac{1}{k}}}\)を求めよ。\((2)\) 任意の正数\(a\)に対して、\(\displa...
math

[math]1999年東京大学後期理系数学問題1

問題 \(n\)を正の整数とする。\(\displaystyle -\frac{\pi}{2}\leq x\leq \frac{\pi}{2}\)の範囲において$$f_n(x) = \begin{cases}\displaystyl...
math

[math]2009年東京医科歯科大学前期数学問題2

問題 正の実数\(a, b, c\)を係数とする\(2\)次式\(f(x) = ax^2+bx+c\)に関して、次の条件\(C\)を考える。条件\(C:\) \(3\)で割り切れないすべての整数\(x\)について、\(f(x)\)が...
math

[math]2015年東京工業大学前期数学問題1

問題 数列\(\{a_n\}\)を$$a_1 = 5, a_{n+1}=\frac{4a_n-9}{a_n-2}\ (n=1, 2, 3, \cdots)$$で定める。また数列\(\{b_n\}\)を$$b_n = \frac{a_...
タイトルとURLをコピーしました