確率

math

[math]2015年東京医科歯科大学数学問題1

問題 \(n\)を自然数、\(m\)を\(2n\)以下の自然数とする。\(1\)から\(n\)までの自然数が\(1\)つずつ記されたカードが、それぞれの数に対して\(2\)枚ずつ、合計\(2n\)枚ある。この中から、\(m\)枚のカ...
math

[math]2019年東京医科歯科大学数学問題1

問題 \(n\)を\(2\)以上の自然数とし、ひとつのサイコロを\(n\)回くり返し投げるとする。\(n\)以下の自然数\(k\)について、\(k\)回目に\(1\)から\(4\)の目が出たら\(a_k = 1\)、\(5\)または...
math

[math]2007年東京医科歯科大学前期数学問題2

問題 座標平面上の動点\(Q\)が以下の規則に従って\(1\)秒ごとに移動する。\((a)\) 原点\((0, 0)\)を出発点とし、まず点\((1, 0)\)または点\((0, 1)\)または点\((0, -1)\)に、それぞれ確...
math

[math]1975年東京大学理系数学問題6

問題 赤玉が\(1\)個と白玉が\(3\)個入った容器\(A\)と、ほかに赤玉と白玉の入った容器\(B\)と\(C\)がある。いま\(A, B, C\)から無作為に\(1\)個ずつ合計\(3\)個の球を取り出し、これらからやはり無作...
math

[math]2021年東京医科歯科大学数学問題1

問題 \(0\)から\(9\)までの相異なる整数が\(1\)つずつ書かれた\(10\)個の球が、袋の中に入っている。この袋から球を無作為に\(1\)個取り出してはもとにもどす操作を\(3\)回繰り返したとき、取り出した球に書かれてい...
math

[math]2022年東京大学理系数学問題6

問題 \(O\)を原点とする座標平面上で考える。\(0\)以上の整数\(k\)に対して、ベクトル\(\overrightarrow{v_k}\)を$$\overrightarrow{v_k} = \left(\cos{\frac{2...
math

[math]1995年京都大学前期文理共通問題文系問題5理系問題5

問題 \(1\)番から\(7\)番まで番号のついた席が番号順に一列に並んでいる。客が順に到着して次のように着席していくとする。\(\text{(イ)}\) 両端の席および先客が着席している隣の席に次の客が着席する確率は、すべて等しい...
math

[math]2022年京都大学理系数学問題2

問題 箱の中に\(1\)から\(n\)までの番号がついた\(n\)枚の札がある。ただし\(n\geq 5\)とし、同じ番号の札はないとする。この箱から\(3\)枚の札を同時に取り出し、札の番号を小さい順に\(X, Y, Z\)とする...
math

[math]1993年東京大学理系前期数学問題5

問題 \(1\)と\(0\)を\(5\)個並べた列\(10110\)をある人が繰り返し書き写すとする。ただし、この列を\(S\)で表し、これの第\(1\)回目の写しを\(S_1\)で表すとき、第\(2\)回目に書き写すときに\(S_...
math

[math]1994年京都大学前期文系数学問題4

問題 さいころを\(n\)回続けて投げるとき、\(k\)回目に出る目の数を\(X_k\)とし、\(Y_n = X_1+X_2+\cdots + X_n\)とする。\(Y_n\)が\(7\)で割り切れる確率を\(p_n\)とする。\(...
タイトルとURLをコピーしました