過去問

math

[math]2021年東京医科歯科大学前期数学問題2

問題 \(a, h\)を正の実数とし、\(xyz\)空間の\(5\)点\(A(a, a, 0), B(-a, a, 0), C(-a, -a, 0), D(a, -a, 0), E(0, 0, h)\)を頂点とする四角錐を\(P\)...
math

[math]2020年東京医科歯科大学前期数学問題1

問題 \(N\)を自然数として、表と裏が等確率で出るコインを\(N\)回投げる試行を考え、この試行の結果によって関数\(f(x)\)を次のように定義する。\(1. \) \(x\leq 0\)のとき、\(f(x) = 0\)\(2....
math

[math]2003年京都大学後期数学問題文系問題1

問題 三角形\(ABC\)と点\(P\)に対して、次の\(2\)つの条件は同値であることを証明せよ。\((i)\) 点\(P\)は三角形\(ABC\)の内部(周は除く)にある。\((ii)\) 正の数\(a, b, c\)があって、...
math

[math]2003年京都大学後期数学問題理系問題1

問題 正三角形\(ABC\)の辺\(AB\)上に点\(P_1, P_2\)が、辺\(BC\)上に点\(Q_1, Q_2\)が、辺\(CA\)上に点\(R_1, R_2\)があり、どの点も頂点に一致していないとする。このとき三角形\(...
math

[math]2003年京都大学前期数学文理共通問題文系問題3理系問題3

問題 四面体\(OABC\)は次の\(2\)つの条件\((i)\) \(OA \perp BC, OB\perp AC, OC\perp AB\)\((ii)\) \(4\)つの面の面積がすべて等しいをみたしている。このとき、この四...
math

[math]2002年京都大学前期文系数学問題2

問題 四角形\(ABCD\)を底面とする四角錐\(OABCD\)は\(\overrightarrow{OA}+\overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{O...
math

[math]2002年京都大学前期理系数学問題2

問題 半径\(1\)の円周上に相異なる\(3\)点\(A, B, C\)がある。\((1)\) \(AB^2 + BC^2 + CA^2 > 8\)ならば三角形\(ABC\)は鋭角三角形であることを示せ。\((2)\) \(AB^2...
math

[math]2001年京都大学後期文系数学問題1

問題 平面上のベクトル\(\overrightarrow{u}, \overrightarrow{v}\)について、$$|\overrightarrow{u}| = 1, |\overrightarrow{u} + 3\overri...
math

[math]2001年京都大学前期理系数学問題4

問題 \(xyz\)空間内の正八面体の頂点\(P_1, P_2, \cdots, P_6\)とベクトル\(\overrightarrow{v}\)に対し、\(k\ne m\)のとき\(\overrightarrow{P_kP_m}\...
math

[math]2000年京都大学前期数学問題理系問題3

問題 \(\displaystyle \overrightarrow{a} = (1, 0, 0), \overrightarrow{b} = \left(\cos{\frac{\pi}{3}, \sin{\frac{\pi}{3}...
タイトルとURLをコピーしました